A=2 mũ 1+2 mũ 2+2 mũ 3+...+2 mũ 76+2 mũ 77
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(2^{78}+2^{78}.2+2^{78}.4\right):\left(2^{75}.4+2^{75}.2+2^{75}\right)\)
\(=\left[2^{78}.\left(1+2+4\right)\right]:\left[2^{75}\left(1+2+4\right)\right]\)
\(=\frac{2^{78}.\left(1+2+4\right)}{2^{75}.\left(1+2+4\right)}\)
\(=2^3=8\)
d) Ta có: \(\dfrac{2^{76}-2^{74}}{2^{78}-2^{76}}\)
\(=\dfrac{2^{74}\left(2^2-1\right)}{2^{76}\left(2^2-1\right)}=\dfrac{2^{74}}{2^{76}}\)
\(=\dfrac{1}{2^2}=\dfrac{1}{4}\)
\(\frac{2^{76}-2^{74}}{2^{78}-2^{76}}=\frac{2^{74}\left(2^2-1\right)}{2^{76}\left(2^2-1\right)}=\frac{2^{74}}{2^{76}}=\frac{1}{2^2}=\frac{1}{4}.\)
học tốt ~~~
\(\dfrac{3^2}{20.23}+\dfrac{3^2}{23.26}+\dfrac{3^2}{26.29}+...+\dfrac{3^2}{77.80}\)
\(=3\left(\dfrac{3}{20.23}+\dfrac{3}{23.26}+\dfrac{3}{26.29}+...+\dfrac{3}{77.80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{29}+...+\dfrac{1}{77}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{1}{20}-\dfrac{1}{80}\right)\)
\(=3\left(\dfrac{4}{80}-\dfrac{1}{80}\right)=3.\dfrac{3}{80}=\dfrac{9}{80}\)
1; 73.52.54.76:(55.78)
= (73.76).(52.54) : (55.78)
= 79.56: (55.78)
= (79:78).(56:55)
= 7.5
= 35
2; 33.a7.3.a2:(34.a6)
= (33.3).(a7.a2): (34.a6)
= 34.a9: (34.a6)
= (34:34).(a9:a6)
= a3
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
giúp mk đi mk vội lắm mai mk kiểm tra rồi các bạn ơi
a: \(3C=3+3^2+...+3^{n+1}\)
=>\(2C=3^{n+1}-1\)
hay \(C=\dfrac{3^{n+1}-1}{2}\)
b: \(m\cdot S=m+m^2+m^3+...+m^{n+1}\)
=>\(S\left(m-1\right)=m^{n+1}-1\)
hay \(S=\dfrac{m^{n+1}-1}{m-1}\)
\(A=2^1+2^2+...+2^{76}+2^{77}\)
=>\(2A=2^2+2^3+...+2^{77}+2^{78}\)
=>\(2A-A=2^2+2^3+...+2^{77}+2^{78}-2^1-2^2-...-2^{76}-2^{77}\)
=>\(A=2^{78}-2\)
nhân 2 lên rồi trừ đi
a=2^78-2