K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

\(tanx=\dfrac{1}{2}\Leftrightarrow\dfrac{sinx}{cosx}=\dfrac{1}{2}\Leftrightarrow cosx=2sinx\)

\(1+tan^2x=\dfrac{1}{cos^2x}\) \(\Leftrightarrow cos^2x=\dfrac{4}{5}\)

=> \(sin2x=2sinx.cosx=cos^2x\)

\(A=\dfrac{2sin2x}{2-3cos2x}=\dfrac{2cos^2x}{2-3\left(cos^2x-1\right)}=\dfrac{8}{13}\)

 

 

NV
29 tháng 4 2021

\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}+\dfrac{1}{2^{2012}}\)

\(\Rightarrow2A=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2011}}\)

\(\Rightarrow2A-A=2-\dfrac{1}{2^{2012}}\)

\(\Rightarrow A=2-\dfrac{1}{2^{2012}}\)

\(A= 1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\)\(\dfrac{1}{2^{2012}}\)

\(2A=2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\)

\(2A-A=(2+1+\dfrac{1}{2}+...+\)\(\dfrac{1}{2^{2012}}\))\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2012}}\right)\)

\(A=2-\)\(\dfrac{1}{2^{2012}}\)

\(A=\dfrac{7}{3}+\dfrac{5}{7}+\dfrac{2}{3}-\dfrac{7}{12}+\dfrac{5}{2}=3+\dfrac{221}{84}=\dfrac{473}{84}\)

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)

\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)

|x+3|=5

=>x=2(loại) hoặc x=-8(nhận)

Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)

b: A nguyên

=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}

=>x^2+x+2=2 hoặc x^2+x+2=4

=>x^2+x-2=0 hoặc x(x+1)=0

=>\(x\in\left\{1;0;-1\right\}\)

\(A=2x+xy^2-x^2y-2y\)

\(=2\left(x-y\right)-xy\left(x-y\right)\)

\(=\left(x-y\right)\left(2-xy\right)\)

\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)

\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)

17 tháng 4 2021

\(A=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)ĐK : \(x\ne-2;2\)

\(=\left(\dfrac{x}{x-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{x-4}+\dfrac{2x+4+2-x}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)=\left(\dfrac{x}{x-4}+\dfrac{x+6}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{6}{x+2}\right)\)

\(=\left(\dfrac{x\left(x^2-4\right)+\left(x+6\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}\right):\dfrac{6}{x+2}\)

\(=\dfrac{x^3-4x+x^2-2x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}:\dfrac{6}{x+2}=\dfrac{x^3+x^2-6x+24}{\left(x-4\right)\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{6}\)

\(=\dfrac{x^3+x^2-6x+24}{6\left(x-4\right)\left(x-2\right)}=\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}\)

17 tháng 4 2021

P/s : mình thấy đề này cứ sai sai ở đâu ý ! 

b, Ta có : \(\dfrac{\left(x+4\right)\left(x^2-3x+6\right)}{6\left(x-4\right)\left(x-2\right)}=2\)

\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x^2-3x+6\right)-12\left(x-4\right)\left(x-2\right)}{6\left(x-4\right)\left(x-2\right)}=0\)

\(\Rightarrow x^3-11x^2+66x-72=0\)

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$

a) 

\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)

\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)

b) Tại $x=81$ thì $\sqrt{x}=9$.

Khi đó: $A=\frac{4(9+2)}{9-5}=11$

c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$

$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$

$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$

1 tháng 4 2021

Hỗ trợ em nhé cô

a: A=x^2y(2/3+3+1)=14/3*x^2y

=14/3*3^2*(-1/7)

=-2*3=-6