K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: H là trung điểm của BC

a: Xét ΔAHB và ΔAHC có

AB=AC

AH chung

HB=HC

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

b: Ta có: \(AM=MB=\dfrac{AB}{2}\)

\(AN=NC=\dfrac{AC}{2}\)

mà AB=AC

nên AM=MB=AN=NC

Xét ΔAMH và ΔANH có

AM=AN

\(\widehat{MAH}=\widehat{NAH}\)

AH chung

Do đó: ΔAMH=ΔANH

=>HM=HN

c: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC

A B C H M N

a, Xét tam giác \(\Delta ABH\) và \(\Delta ACH\) có :

\(HB=HC\left(gt\right)\)

\(\widehat{B}=\widehat{C}\left(gt\right)\)

\(AB=AC\left(gt\right)\)

= > \(\Delta ABH=\Delta ACH\left(c-g-c\right)\)

b, M là trung điểm của cạnh AC = > MA = 1/2 AC ( 1 )

 N là trung điểm của cạnh AB = > NA = 1/2 AB  ( 2 )

Từ ( 1 ) , ( 2 ) = > MA = NA   ( Do AB = AC )

Mà tam giác ABH = tam giác ACH ( câu a, )

= > \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng )

Xét \(\Delta ANH\) và \(\Delta AMH\) có :

\(AN=AM\left(cmt\right)\)

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

AH chung 

= > \(\Delta ANH=\Delta AMH\left(c-g-c\right)\)

= > HN = HM ( 2 cạnh tương ứng )

 

 

 

13 tháng 3 2023

a) Xét hai tam giác ABH và ACH ta có:

- AB = AC (vì ABC là tam giác cân)

- HB = HC (vì H là trung điểm của BC)

\(\widehat{B}=\widehat{C}\) (vì ABC là tam giác cân)

Vậy \(\Delta ABH=\Delta ACH\) (c.g.c)

b) Xét hai tam giác NBH và MCH ta có:

- NB = MC (vì AB = AC, M là trung điểm của AC và N là trung điểm của AB)

- HB = HC (đã chứng minh trên)

\(\widehat{B}=\widehat{C}\) (đã chứng minh trên)

Suy ra \(\Delta NBH=\Delta MCH\) (c.g.c)

Khi đó HN = HM (vì hai cạnh tương ứng)

a: Xet ΔABH và ΔACH có

AB=AC

BH=CH

AH chung

=>ΔABH=ΔACH

=>góc BAH=góc CAH

=>AH là phân giác của góc BAC

b: góc DAH=góc CAH=góc DHA
=>ΔDAH cân tại D

a: Xét ΔABH và ΔACH có 

AB=AC
AH chung

BH=CH

Do đó: ΔABH=ΔACH

Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường phân giác

b: Ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

c: Xét tứ giác AHCD có 

M là trung điểm của AC

M là trung điểm của HD

Do đó: AHCD là hình bình hành

Suy ra: AD//HC

hay AD//BC

2 tháng 7 2019

A B C M N H

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AB=AC(tam giác ABC cân tại A)

                                     AH: chung

Do đó:tam giác ABH= tam giác ACH(ch-cgv)

b)Xét tam giác BMH vuông tại M và tam giác CNH vuông tại N có:

                                     BH=CH(tam giác ABH=tam giác ACH)

                                      góc B=góc C(tam giác ABC cân tại A)

Do đó:tam giác BMH=tam giác CNH(ch-gn)

#Ở câu b bạn có thể chọn trường hợp ch-cgv cũng đc hjhj:)))<3#

c)bn cho thiếu dữ kiên nên mk k làm đc nhé tks

P/S: chúc bạn học tốt..........boaiiii>.< moa<3

                      

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)

c: Xét tứ giác AHCE có

D là trung điểm của AC

D là trung điểm của HE

Do đó: AHCE là hình bình hành

Suy ra: AH//CE