K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4

           Giải:

Câu a tự làm

b; Phương trình hoành độ giao điểm của (p) và (d) là:

             \(x^2\) = - 2\(x\) + 3

              \(x^2\) + 2\(x\) - 3 = 0

              a + b + c = 1 + 2  - 3 = 0

      Vậy phương trình có hai nghiệm phân biệt lần lượt là:

              \(x_1\) = 1; \(x_2\) = - 3

\(x_1\) = 1 ⇒ y1 = 12 = 1;  \(x_2\) = - 3 ⇒ y2 =  (\(x_2\))2 = (- 3)2 = 9

Vậy (p) cắt (d) tại hai điểm A; B lần lượt có tọa độ là:

A(1; 1); B(-3; 9)

 

 

 

24 tháng 9 2021

1) \(\sqrt{\dfrac{1}{200}}\)                            2) \(\dfrac{5}{1-\sqrt{6}}\)

\(=\sqrt{\dfrac{1^2}{10^2.2}}\)                          \(=\dfrac{1-\sqrt{6}+4+\sqrt{6}}{1-\sqrt{6}}\)

\(=\dfrac{1}{10\sqrt{2}}\)                              \(=1+\dfrac{4+\sqrt{6}}{1-\sqrt{6}}\)

24 tháng 9 2021

Bài 2: 

1. \(\sqrt{2x-5}=7\)    ĐKXĐ: \(x\ge\dfrac{5}{2}\)

<=> 2x - 5 = 72

<=> 2x - 5 = 49

<=> 2x = 54

<=> x = 27 (TM)

2. \(3+\sqrt{x-2}=4\)     ĐKXĐ: \(x\ge2\)

<=> \(\sqrt{x-2}=1\)

<=> x - 2 = 1

<=> x = 3 (TM)

3. \(\sqrt{x^2-2x+1}=1\)

<=> \(\sqrt{\left(x-1\right)^2}=1\)

<=> \(|x-1|=1\)

<=> \(\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

4. \(\sqrt{x^2-4x+4}=1\)

<=> \(\sqrt{\left(x-2\right)^2}=1\)

<=> \(|x-2|=1\)

<=> \(\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

5. \(\sqrt{4x^2+1-4x}=\sqrt{x^2+16+8x}\)

<=> \(\left(\sqrt{4x^2+1-4x}\right)^2=\left(\sqrt{x^2+16+8x}\right)^2\)

<=> \(|4x^2+1-4x|=|x^2+16+8x|\)

<=> \(\left[{}\begin{matrix}4x^2+1-4x=x^2+16+8x\\4x^2+1-4x=-\left(x^2+16+8x\right)\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x^2-x^2-4x-8x+1-16=0\\4x^2+1-4x=-x^2-16-8x\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}3x^2-12x-15=0\\5x^2+4x+17=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}3x^2+3x-15x-15=0\\VNghiệm\end{matrix}\right.\)

<=> 3x(x + 1) - 15(x + 1) = 0

<=> (3x - 15)(x + 1) = 0

<=> \(\left[{}\begin{matrix}3x-15=0\\x+1=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

1: \(\sqrt{\dfrac{1}{200}}=\dfrac{\sqrt{2}}{20}\)

2: \(\dfrac{5}{1-\sqrt{6}}=-1-\sqrt{6}\)

3: \(\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{1+\sqrt{2}}\)

\(=\dfrac{1+\sqrt{2}-1+\sqrt{2}}{-1}\)

\(=-2\sqrt{2}\)

a: \(23AC1D_{16}=2337821_{10}\)

b: \(FC3DE_{16}=1033182_{10}\)

2: Ta có: \(\sqrt{16-6\sqrt{7}}\cdot\left(3+\sqrt{7}\right)\)

\(=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)\)

=9-7

=2

3: Ta có: \(\left(\sqrt{6}+\sqrt{14}\right)\cdot\sqrt{5-2\sqrt{21}}\)

\(=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

=7-3

=4

27 tháng 9 2021

\(1,=\sqrt{\left(5+2\sqrt{6}\right)^2}-\sqrt{\left(3-\sqrt{6}\right)^2}=5+2\sqrt{6}-3+\sqrt{6}=2+3\sqrt{6}\\ 2,=\sqrt{\left(3-\sqrt{7}\right)^2}\left(3+\sqrt{7}\right)=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)=9-7=2\\ 3,=\left(\sqrt{3}+\sqrt{7}\right)\sqrt{10-2\sqrt{21}}=\left(\sqrt{3}+\sqrt{7}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\\ =\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=7-3=4\\ 4,=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{6+2\sqrt{5}}+\sqrt{4-2\sqrt{3}}\right)\\ =\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+1+\sqrt{3}-1\right)\\ =\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

\(5,\\ =\sqrt{\left(3\sqrt{3}-5\right)^2}+\sqrt{\left(5-2\sqrt{3}\right)^2}=3\sqrt{3}-5+5-2\sqrt{3}=\sqrt{3}\\ 6,=\sqrt{13-4\sqrt{10}}-\sqrt{53+12\sqrt{10}}\\ =\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}-2\sqrt{2}\right)^2}\\ =2\sqrt{2}-\sqrt{5}-3\sqrt{5}+2\sqrt{2}=4\sqrt{2}-4\sqrt{5}\)

8 tháng 11 2022

EX1:

1. A

2.A

3.A

4.D

5.D

6.A

7.C

8.B

9.B

10.C

11.B

EX2:

1. Tired

2. gives her

3. lot of

4.much does

5. as expensive as

28 tháng 9 2021

h) \(=8-12y+6y^2-y^3\)

i) \(=8y^3-125\)

j) \(=27y^3+64\)

k) \(=x^3-9x^2+27x-27+8-12x+6x-x^3=-9x^2+21x-19\)