tính hợp lí phép tính sau: (1^1+2^2+3^3+....+2021^2021)(8^2-576:3^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$
A= \(\dfrac{11}{9}\).\(\dfrac{-3}{2}\)- \(\dfrac{11}{9}\).\(\dfrac{15}{2}\)+(2021)0
= \(\dfrac{11}{9}\)(\(\dfrac{-3}{2}\)-\(\dfrac{15}{2}\)) + 1
= \(\dfrac{11}{9}\)(-9) + 1
= -11 + 1
= -10
Lần sau bn ko đc phép chuyển \(\left(-2021\right)^0\) sang \(\left(2021\right)^0\) đou nha
Các biểu thức không chứa phép cộng, phép trừ là : \(3{x^2};3t; - 7; - 2{z^4};1;2021{y^2}\)
a) 2021 - (1/3)² . 3²
= 2021 - 1/9 . 9
= 2021 - 1
= 2020
b) 5/10 + 9 . (-3/2)
= 1/2 - 27/2
= -26/2
= -13
c) -10 . (-2021/2022)⁰ + (2/5)² : 2
= -10 . 1 + 4/25 . 2
= -10 + 8/25
= -68/7
\(a,2021-\left(\dfrac{1}{3}\right)^2\cdot3^2\\ =2021-\dfrac{1}{9}\cdot9\\ =2021-\dfrac{9}{9}\\ =2021-1=2020\\ b,\dfrac{5}{10}+9\cdot\dfrac{-3}{2}\\ =\dfrac{5}{10}+\dfrac{-27}{2}\\ =\dfrac{5}{10}+\dfrac{-135}{10}\\ =-\dfrac{130}{10}\\ =-13\\ c,-10\cdot\left(-\dfrac{2021}{2022}\right)^0+\left(\dfrac{2}{5}\right)^2:2\\ =-10\cdot1+\dfrac{4}{25}\cdot\dfrac{1}{2}\\ =-10+\dfrac{4}{50}\\ =-10+\dfrac{2}{25}\\ =-\dfrac{248}{25}\)
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
\(a,\left(3x+1\right)\left(3x-1\right)-\left(18x^3+5x^2-2x\right):2x\\ =\left(9x^2-1\right)-\left(9x^2+\dfrac{5}{2}x-1\right)\\ =9x^2-1-9x^2-\dfrac{5}{2}x+1=\dfrac{5}{2}x\)
\(b,3x\left(x-2021\right)-x+2021=0\\ \Rightarrow b,3x\left(x-2021\right)-\left(x-2021\right)=0\\ \Rightarrow\left(x-2021\right)\left(3x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\left(1^1+2^2+3^3+...+2021^{2021}\right)\left(8^2-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+...+2021^{2021}\right)\left(64-576:9\right)\)
\(=\left(1^1+2^2+3^3+...+2021^{2021}\right)\left(64-64\right)\)
=0