so sanh a va b
A = 2017^ 10 x 2017 ^ 9
B= 2018^ 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh \(A=\dfrac{2016}{2017}+\dfrac{2017}{2018}\) và \(B=\dfrac{2016+2017}{2017+2018}\)
Có 2 cách:
C1 :Rảnh thì bấm máy tính luôn rồi so sánh (nhưng cách này tỉ lệ sai khá cao nếu bất cẩn ghi nhầm số):
\(A=\dfrac{2016}{2017}+\dfrac{2017}{2018}\) \(=1,999008674\approx2\)
\(B=\dfrac{2016+2017}{2017+2018}\) \(=0,9995043371\approx1\)
Do 2 > 1 nên :
\(\Rightarrow A>B\).
C2:
Ta có:
\(\dfrac{2016}{2017}>\dfrac{2016}{2018}\Rightarrow A>\dfrac{2016}{2018}+\dfrac{2017}{2018}\Rightarrow A>\dfrac{2016+2017}{2017}\)
\(B=\dfrac{2016+2017}{2017+2018}=\dfrac{2016+2017}{4035}\)
Vì \(\dfrac{2016+2017}{2018}>\dfrac{2016+2017}{4035}\)
\(\Rightarrow A>B\).
_ Học tốt :))_
Vì 2017<2018 nên\(\frac{1}{2017}\)>\(\frac{1}{2018}\)
⇒\(\frac{2}{2017}\)>\(\frac{1}{2018}\)
⇒\(\frac{2015}{2017}\)=1-\(\frac{2}{2017}\)<1-\(\frac{1}{2018}\)=\(\frac{2017}{2018}\)
Vậy, \(\frac{2015}{2017}\)< \(\frac{2017}{2018}\)
Ta có :
\(A=2016.2018\)
\(\Rightarrow A=2016\left(2017+1\right)\)
\(\Rightarrow A=2016.2017+2016\)
Ta lại có :
\(B=2017.2017\)
\(\Rightarrow B=2017.\left(2016+1\right)\)
\(\Rightarrow B=2017.2016+2017\)
Ta thấy: \(2017>2016\)
\(\Rightarrow2017.2016+2017>2017.2016+2016\)
\(\Rightarrow B>A\)
Ta có: \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)\(\Rightarrow10A=\frac{10^{2017}+2018.10}{10^{2017}+2018}=\frac{10^{2017}+2018+2018.9}{10^{2017}+2018}=1+\frac{2018.9}{10^{2017}+2018}\)
Tương tự ta có: \(10B=1+\frac{2018.9}{10^{2018}+2018}\)
Vì \(2017< 2018\)\(\Rightarrow10^{2017}< 10^{2018}\)\(\Rightarrow10^{2017}+2018< 10^{2018}+2018\)
\(\Rightarrow\frac{2018.9}{10^{2017}+2018}>\frac{2018.9}{10^{2018}+2018}\)\(\Rightarrow1+\frac{2018.9}{10^{2017}+2018}>1+\frac{2018.9}{10^{2018}+2018}\)
hay \(10A>10B\)\(\Rightarrow A>B\)
Vậy \(A>B\)
Ta có : \(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}=\frac{10^{2017}+2018+18162}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\)
Ta có : \(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow\frac{10^{2018}+20180}{10^{2018}+2018}=\frac{10^{2018}+2018+18162}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\)
Vì \(10^{2017}+2018< 10^{2018}+2018\) nên \(\frac{18162}{10^{2017}+2018}>\frac{18162}{10^{2018}+2018}\)
\(\Rightarrow1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2017}+2018}\Rightarrow10A>10B\Rightarrow A>B\)
Vậy A > B
Làm khác bạn kia 1 xíu à
ta thấy\(1-\frac{2017}{2018}=\frac{1}{2018}>\frac{1}{2019}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{2017}{2018}< \frac{2018}{2019}\)