K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
9 tháng 4

Thay số đi , mik ko bt rõ loại này lắm

16 tháng 8 2023

(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)

Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).

Vậy: \(x\in\left\{0;2;4;6\right\}\).

 

(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)

Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)

nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).

Vậy: \(x\in\left\{-2;0;1;3\right\}\).

a: f(x) chia hết cho g(x)

=>x^2-3x-2x+6+3 chia hết cho x-3

=>3 chia hết cho x-3

=>x-3 thuộc {1;-1;3;-3}

=>x thuộc {4;2;6;0}

b: f(x) chia hết cho g(x)

=>2x^3-x^2+6x-3+5 chia hết cho 2x-1

=>5 chia hết cho 2x-1

=>2x-1 thuộc {1;-1;5;-5}

=>x thuộc {2;0;3;-2}

a) \(7⋮x+1\Rightarrow x+1\inƯ\left(7\right)\)

\(\Rightarrow\)X+1 \(\in\)\(\left\{\pm1;\pm7\right\}\)\(\Rightarrow x\in\left\{0;-2;6;-8\right\}\)

các câu b và c làm tương tự 

13 tháng 4 2020

a) \(\Rightarrow x+1\inƯ\left(7\right)\)

Mà Ư(7) = \([\)\(\pm1;\pm7\)\(]\)

Ta có bảng

x+1xkết luận
10thoã mãn
-1-2thỏa mãn
76thỏa mãn
-7-8thỏa mãn
25 tháng 5 2018

\(\left(mn-2\right)⋮3\Rightarrow mn\) chia cho 3 dư 2

Đặt \(m=3k+r;n=3p+q\left(p;q;r;k\in N;r\ne q;1\le r;q\le2\right)\)

Vì m;n bình đẳng nên giả sử \(m\ge n\) \(\Rightarrow r\ge q\Rightarrow r=1;q=2\)

Ta có : \(x^m+x^n+1=x^{3k+1}+x^{3p+2}+1\) 

\(=\left(x^{3k+1}-x\right)+\left(x^{3p+2}-x^2\right)+\left(x^2+x+1\right)\)

\(=x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)+\left(x^2+x+1\right)\)

Ta thấy \(x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)⋮x^3-1⋮x^2+x+1\)

\(\Rightarrow\)\(x\left(x^{3k}-1\right)+x^2\left(x^{3p}-1\right)+\left(x^2+x+1\right)⋮\left(x^2+x+1\right)\)

Hay \(x^m+x^n+1⋮x^2+x+1\)

4 tháng 7 2018

Câu 1:

25 - 4.( -x - 1 ) + 3.(5x) = -x + 34

=> 25 + 4x + 4 + 15x = -x + 34

=> (25 + 4) + (4x + 15x) = -x + 34

=> 29 + 19x = -x + 34

=> 19x + x = 34 - 29

=> 20x = 5

=> x = \(\frac{1}{4}\)(T/m)

Vậy x =\(\frac{1}{4}\)

Câu 2:

Ta có: 11\(⋮\)2x - 1  

=> 2x - 1 \(\in\)Ư(11) = \(\left\{\pm1;\pm11\right\}\)

=> 2x \(\in\){2; 0; 12; -10}

=> x \(\in\){1; 0; 6; -5} (T/m)

Vậy x \(\in\){1; 0; 6; -5}

Câu 3:

Ta có: x + 12 \(⋮\)x - 2

=> x - 2 + 14 \(⋮\) x - 2

Mà x - 2 \(⋮\)  x - 2

=> 14 \(⋮\) x - 2

=> x - 2 \(\in\)Ư(14) \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

=> x \(\in\){3; 1; 4; 0; 9; -5; 16; -12} (T/m)

Vậy x \(\in\){3; 1; 4; 0; 9; -5; 16; -12}

Câu 4

Ta có: 3x + 17 \(⋮\)x + 3

=> 3x + 9 + 8 \(⋮\)x + 3

=> 3(x + 3) + 8 \(⋮\)x + 3

Mà 3(x + 3) \(⋮\)x + 3

=> 8 \(⋮\)x + 3

=> x + 3\(\in\)Ư(8) =\(\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

=> x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11} (T/m)

Vậy x \(\in\){ -2; -4; -1; -5; 1; -7; 5; -11}

4 tháng 7 2018

C2:

11 chia hết cho 2x—1

==> 2x—1 € Ư(11)

==> 2x—1 € { 1;-1;11;-11}

Ta có:

TH1: 2x—1=1

2x=1+1

2x=2

x=2:2

x=1

TH2: 2x—1=—1

2x=-1+1

2x=0

x=0:2

x=0

TH3: 2x—1=11

2x=11+1

2x=12

x=12:2

x=6

TH4: 2x—1=-11

2x=-11+1

2x=—10

x=-10:2

x=—5

Vậy x€{1;0;6;—5}

C3: x+12 chia hết cho x—2

==> x—2+14 chia hết cho x—2

Vì x—2 chia hết cho x—2 

Nên 14 chia hết cho x—2

==> x—2 € Ư(14)

==> x—2 €{ 1;-1;2;-2;7;-7;14;-14}

Ta có:

TH1: x—2=1

x=1+2

x=3

TH2: x—2=-1

x=-1+2

x=1

TH3: x—2=2

x=2+2’

x=4

TH4: x—2=—2

x=—2+2

x=0

TH5: x—2=7 

x=7+ 2

x=9 

TH6:x—2=—7 

x=—7+ 2 

x=—5 

TH7: x—2=14 

x=14+2 

x=16 

TH8: x—2=-14

x=-14+2

x=-12

Vậy x€{3;1;4;0;9;—5;16;-12}

25 tháng 11 2019

Bài 1) ĐK : \(x,y\in N\)

a) \(2^{x+1}\cdot3^y=12\Leftrightarrow2^{x+1}\cdot3^y=2^2\cdot3\Rightarrow\hept{\begin{cases}x+1=2\\y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}.}\)(thoả mãn đ/k đề)

Vậy x = 1 và y = 3

b) \(\frac{10^x}{5^y}=20^y\Leftrightarrow\left(\frac{10}{5}\right)^y=\left(2^{10}\right)^y\Leftrightarrow2^y=2^{10y}\Leftrightarrow y=10y\Leftrightarrow9y=0\Leftrightarrow y=0\)(thoả mãn đ/k đề)

Vậy y = 0

(* Lưu ý: Từ chỗ y = 10y chuyển vế để nhận nghiệm y = 0, nếu chia ra sẽ có 1 = 10 (vô lý))

c)\(x^2+x=0\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\hept{\begin{cases}x=0\left(N\right)\\x=-1\left(L\right)\end{cases}}\)(loại vì x = -1 vì \(x\in N\))

Vậy x = 0

d) \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow x+2=x+4\Leftrightarrow x-x=4-2\Leftrightarrow0x=4\)(vô lý)

Vậy \(x=\varnothing\)

Bài 2) ĐK: \(a,b\ne0\)

Bài này có vẻ như là một bài chứng minh, lần sau bạn nên ghi đầy đủ nhé ^^!

a) \(a+5b=\left(a+b\right)+4b\)mà \(\hept{\begin{cases}a+b⋮4\\4a⋮4\end{cases}\Rightarrow\left(a+b\right)+4b⋮4}\)hay \(a+5b⋮4\left(đpcm\right)\)

b) \(a-3b=\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Rightarrow\left(a+b\right)-4b⋮4}\)hay \(a-3b⋮4\left(đpcm\right)\)

c) \(3a-b=3a+3b-4b=3\left(a+b\right)-4b\)mà \(\hept{\begin{cases}a+b⋮4\\4b⋮4\end{cases}\Leftrightarrow\hept{\begin{cases}3\left(a+b\right)⋮4\\4b⋮4\end{cases}}}\Rightarrow3\left(a+b\right)-4b⋮4\) hay \(3a-b⋮4\left(đpcm\right)\)

Đây chỉ là cách làm của mình, bạn có thể thay đổi cho phù hợp với bạn nhé!

Học tốt ^3^

25 tháng 11 2019

đpcm là j

26 tháng 10 2018

Thiên Hương đẹp quá đi mất?

28 tháng 10 2018

 Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap

24 tháng 12 2016

a) Áp dụng định lý Bézout ( Bê-du ) , dư của \(f\left(x\right)=x^3+x^2-x+a\)cho x + 2 = x - (-2) là \(f\left(-2\right)\)

Để f(x) chia hết cho x + 2 thì f(-2)=0

\(\Rightarrow\left(-2\right)^3+\left(-2\right)^2-\left(-2\right)+a=0\)

\(-8+4+2+a=0\)

\(a-2=0\)

\(a=2\)

Vậy ...

24 tháng 12 2016

c) \(\frac{n^3+n^2-n+5}{n+2}=\frac{n^3+2n^2-n^2-2n+n+2+3}{n+2}\)nguyên để \(n^3+n^2-n+5⋮n+2\)

\(\Rightarrow\frac{n^2\left(n+2\right)-n\left(n+2\right)+\left(n+2\right)+3}{n+2}\in Z\)

\(\Rightarrow n^2-n+1+\frac{3}{n+2}\in Z\)

\(n^2,n,1\in Z\Rightarrow\frac{3}{n+2}\in Z\)

\(\Rightarrow n+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-1;1\right\}\)

Vậy ...

21 tháng 12 2015

nhiều thế, mk giải phụ chút thôi

a)(x+5) chia hết cho (x-1)

(x-1)+6 chia hết cho x-1

=>6 chia hết cho x-1 hay x-1EƯ(6)={1;-1;2;-2;3;-3;6;-6}

=>xE{2;0;3;-1;4;-2;7;-5}

b)(2-4x) chia hết cho x-1

(-2-4x+4) chia hết cho x-1

-2-(4x-1) chia hết cho x-1

=>2 chia hết cho x-1 hay x-1EƯ(2)={1;-1;2;-2}

=>xE{2;0;3;-1}