tìm số tự nhiên x,y biết : 3-y=2(x-1)^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có: \(3-y=2\left(x-1\right)^2\) (*) và \(2\left(x-1\right)^2\ge0\forall x\)
nên \(3-y\ge0\Rightarrow y\le3\)
\(\Rightarrow y\in\left\{0;1;2;3\right\}\) (vì y là số tự nhiên) (1)
Mặt khác: \(2\left(x-1\right)^2\) là số chẵn với mọi x tự nhiên
\(\Rightarrow3-y\) chẵn \(\Rightarrow y\) lẻ (2)
Từ (1) và (2) \(\Rightarrow y\in\left\{1;3\right\}\)
+, Với \(y=1\) thì (*) thành: \(3-1=2\left(x-1\right)^2\)
\(\Rightarrow2\left(x-1\right)^2=2\)
\(\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
+, Với \(y=3\) thì (*) thành: \(3-3=2\left(x-1\right)^2\)
\(\Rightarrow2\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\left(tm\right)\)
Vậy \(\left(x;y\right)\in\left\{\left(1;3\right);\left(2;1\right);\left(0;1\right)\right\}\) là các cặp giá trị cần tìm.
\(3-y=2\left(x-1^2\right)\)
\(=>\left(3-y\right)-2\left(x-1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}3-y=0\\2\left(x-1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\\left(x-1\right)^2=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}y=3\\x-1=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}y=3\\x=1\end{matrix}\right.\)
Vậy x = 1; y = 3.