Tìm a để phân số 3/ a+11 là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) Để x-3/x+3 là một số nguyên thì x+3 khác 0 và x-3 ko chia hết cho x+3
=>x+3-6 ko chia hết cho x+3
=>6 ko chia hết cho x-3
=>x-3 ko thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=> x-3 khác {1;2;3;6;-1;-2;-3;-6}
=>x khác {4;5;6;9;2;1;0;-3}
b) Để A là một số nguyên thì x-3 chia hết cho x+3
=>x+3-6 chia hết cho x-3
=>6 chia hết cho x-3
=>x-3 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Đến đây bn tự lm phần còn lại nha
Bài 2:
Câu a lm giống như câu b bài 1 nha bn
b) Bn tham khảo nha
https://hoidap247.com/cau-hoi/346697
Tìm cái bài thứ hai ý nhưng nhìn hơi khó
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
Để phân số 3/a là 1 số nguyên thì 3 phải chia hết cho a.
\(\Rightarrow a\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Vậy \(a\in\left\{\pm1,\pm3\right\}\)
=))
\(\frac{3}{a}\inℤ\Rightarrow3⋮a\)
\(\Rightarrow a\inƯ \left(3\right)=\left\{\pm1;\pm3\right\}\)
Vậy\(a\in\left\{\pm1;\pm3\right\}\)
giúp mik nhoa mik đag cần cảm ơn những câu hỏi của tất cả các bn nhiều
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
a, \(\dfrac{3}{x-2}\left(ĐKXĐ:x\ne2\right)\)
Để A nguyên thì \(3⋮x-2\)hay \(x-2\inƯ\left(3\right)\)
Xét bảng :
Ư(3) | x-2 | x |
3 | 3 | 5 |
-3 | -3 | -1 |
1 | 1 | 3 |
-1 | -1 | 1 |
Vậy để A nguyên thì \(x\in\left\{-1;1;3;5\right\}\)
b,\(B=-\dfrac{11}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
Để B nguyên thì
\(2x-3\inƯ\left(-11\right)\)( thuộc Ư(11) cũng được nhé như nhau cả )
Xét bảng :
2x-3 | x |
11 | 7 |
-11 | -4 |
1 | 2 |
-1 | 1 |
Vậy để B nguyên thì \(x\in\left\{-4;1;2;7\right\}\)
c, \(C=\dfrac{x+3}{x+1}=\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\left(ĐKXĐ:x\ne-1\right)\)Để C nguyên thì \(x+1\inƯ\left(2\right)\)
Xét bảng :
x+1 | x |
2 | 1 |
-2 | -3 |
1 | 0 |
-1 | -2 |
Vậy để C nguyên thì \(x\in\left\{-3;-2;0;1\right\}\)
d, \(D=\dfrac{2x+10}{x+3}=\dfrac{2x+6+4}{x+3}=\dfrac{2\left(x+3\right)}{x+3}+\dfrac{4}{x+3}=2+\dfrac{4}{x+3}\left(ĐKXĐ:x\ne-3\right)\)
Để D nguyên thì \(x+3\inƯ\left(4\right)\)
Xét bảng:
x+3 | x |
1 | -2 |
-1 | -4 |
2 | -1 |
-2 | -5 |
4 | 1 |
-4 | -7 |
Vậy để D nguyên thì \(x\in\left\{-7;-5;-4;-2;-1;1\right\}\)
A = \(\dfrac{3}{a+11}\) (a ≠ - 11)
A \(\in\) Z ⇔ 3 ⋮ a + 11
a + 11 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
Theo bảng trên ta có: a \(\in\) {-14; -12; -10; -8}
Vậy để A = \(\dfrac{3}{a+11}\) là số nguyên thì a \(\in\) {-14; -12; -10; -8}