K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3

\(E>1+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{10.11}=\)

\(=1+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+...+\dfrac{11-10}{10.11}=\)

\(=1+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{10}-\dfrac{1}{11}=\)

\(=1+\dfrac{1}{2}-\dfrac{1}{11}>1\)

Ta có

\(E< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}=\)

\(=1+\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}=\)

\(=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\)

\(=2-\dfrac{1}{10}< 2\)

\(\Rightarrow1< E< 2\)

23 tháng 6 2021

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\)

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\)

\(=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\)

Giải:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

Ta có:

\(2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)\) 

\(=\left(1-1\right)+\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{3}\right)+...+\left(1-\dfrac{1}{2021}\right)\) 

\(=0+\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

\(=\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}\) 

Mà \(\dfrac{1}{2}+\dfrac{2}{3}+...+\dfrac{2020}{2021}=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\) 

\(\Rightarrow2021-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)=\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{2020}{2021}\left(đpcm\right)\)

21 tháng 5 2018

Áp dụng BĐT AM-GM ta có:

\(\dfrac{abc}{a^2+bc}\le\dfrac{abc}{2a\sqrt{bc}}=\dfrac{\sqrt{bc}}{2}\le\dfrac{b+c}{4}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(abc.VT\le\dfrac{2\left(a+b+c\right)}{4}=1\Leftrightarrow VT\le\dfrac{1}{abc}=VP\)

Dấu "="\(\Leftrightarrow a=b=c=\dfrac{2}{3}\)

18 tháng 12 2023

Trước tiên, ta chứng minh \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (*)

(*) \(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\), luôn đúng.

Vậy (*) được chứng minh. Dấu "=" xảy ra \(\Leftrightarrow a=b\) 

\(\Rightarrow VT=a+b+\dfrac{1}{a}+\dfrac{1}{b}\ge a+b+\dfrac{4}{a+b}\)

Đặt \(a+b=t\left(0< t\le\dfrac{1}{2}\right)\)thì

\(VT\ge t+\dfrac{4}{t}\) \(=t+\dfrac{1}{4t}+\dfrac{15}{4t}\)  (1)

Bây giờ ta sẽ chứng minh \(a+b\ge2\sqrt{ab}\) với \(a,b>0\) (**)

(**) \(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy (**) được chứng minh. Dấu "=" xảy ra \(\Leftrightarrow a=b\)

Do đó từ (1) \(\Rightarrow VT\ge\left(t+\dfrac{1}{4t}\right)+\dfrac{15}{4t}\) 

\(\ge2\sqrt{t.\dfrac{1}{4}t}+\dfrac{15}{4.\dfrac{1}{2}}\) (do \(0< t\le\dfrac{1}{2}\))

\(=\dfrac{17}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=a+b=\dfrac{1}{2}\\a=b\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{4}\)

Ta có đpcm.

8 tháng 3 2017

có bị sai đề không đấy bạn

8 tháng 3 2017

CMR A> 1/9 thì mới làm được chứ

6 tháng 5 2017

tự xử đi

6 tháng 5 2017

mk ăn mày lun ak

13 tháng 12 2022

Cứu với ;-;

18 tháng 4 2023

Ta có \(\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\) \(=\sqrt{a-1}+\dfrac{1}{4\sqrt{a-1}}+\dfrac{3}{4\sqrt{a-1}}\) \(\ge2\sqrt{\sqrt{a-1}.\dfrac{1}{4\sqrt{a-1}}}+\dfrac{3}{4\sqrt{a-1}}\) \(=1+\dfrac{3}{4\sqrt{a-1}}\).

Lập 2 BĐT tương tự rồi cộng vế theo vế, ta có

\(VT\ge3+\dfrac{3}{4}\left(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\right)\)

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\) 

\(\ge3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}\) \(=\dfrac{15}{2}\)

ĐTXR \(\Leftrightarrow a=b=c=\dfrac{5}{4}\). Ta có đpcm

18 tháng 4 2023

Có \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}-\left(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\right)\ge6\) (1)

Ta chứng minh (1) đúng 

Áp dụng bất đẳng thức Schwarz : 

\(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\ge\dfrac{9}{\dfrac{3}{2}}=6\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{a-1}=\sqrt{b-1}=\sqrt{c-1}\\\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}=\dfrac{3}{2}\end{matrix}\right.\) 

\(\Leftrightarrow a=b=c=\dfrac{5}{4}\)(tm)