K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

nl các bạn học giỏi ơi

19 tháng 9 2017


Tổng quát có vp_two.Nhưng có lẽ bài 2 vp làm sai thì phải. gợi ý thôi. 
a, phân tích đa thức thành tổng của bình phương. Vì các bình phương luôn lớn hơn hoặc bằng 0 nên GTNN = phần dư. 
ở bài này GTNN=10 
b,tương tự câu trên luôn, nhưng có vẻ bài này khó hơn nhiều đấy. 
Mẹo nè: bạn đưa các phần tử có x về trước hết rùi đưa về bình phương của 3 số, thêm bớt đc phần còn lại nhét vào 1 bình phương nữa=>còn dư đấy chính là GTNN đó. 
Bài này chắc là hơi khó đối với bạn nên minh làm sơ sơ cho bạn nghen 
x^2-4xy+5y^2+10x-22y+28 
x² - 4xy +10x +4y² + 25-20y +y²-2y +3 
(x-2y+5)²+(y-1)²+2≥2 

VẬy GTNN =2 <=>x=-3;y=1

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

25 tháng 12 2015

\(5x^2-4xy+y^2+4x+7=\left(4x^2-4xy+y^2\right)+\left(x^2+4x+4\right)+3=\left(2x-y\right)^2+\left(x+2\right)^2+3\ge3\)

Dấu = xảy ra khi x = -2 và y = -4

30 tháng 7 2016

D= 5x^2+8xy+5y^2-2x+2y  

=4x^2+8xy+4y^2-2x+2y+y^2+x^2

=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2

(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2

suy ra D>=-1/2 nên D có GTNN là -1/2

30 tháng 7 2016

Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y

5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1  

5D = ( 5x + 4y - 1)2 + 9 (y + 1)- 2

D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1) -  \(\frac{2}{5}\)  \(\ge\)\(\frac{-2}{5}\)

Dấu "=" xảy ra khi y+1 = 0  \(\Leftrightarrow\)y = -1

                          5x + 4y - 1 = 0  \(\Leftrightarrow\)x=1

Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1

22 tháng 8 2020

a) Ta có A = 4x2 - 4x + 1 = (2x - 1)2 \(\ge0\forall x\)

Dấu "=" xảy ra <=> 2x - 1 = 0 => x = 0,5

Vậy GTNN của A là 0 khi x = 0,5

b) Ta có x2 + 4y2 + 4xy = x2 + 2xy + 2xy + 4y2  = x(x + 2y)   + 2y(x + 2y) = (x + 2y)2 \(\ge0\forall x;y\)

Dấu "=" xảy ra <=> x + 2y = 0 => x = - 2y

Vậy GTNN của B là 0 khi x = -2y

22 tháng 8 2020

a) 4x2 - 4x + 1 = ( 2x - 1 )2 ≥ 0 ∀ x 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

Vậy GTNN của biểu thức = 0 <=> x = 1/2

b) x2 + 4y2 + 4xy = ( x + 2y )2 ≥ 0 ∀ x ,y 

Đẳng thức xảy ra <=> x + 2y = 0 => x = -2y

Vậy GTNN của biểu thức = 0 <=> x = -2y

15 tháng 8 2020

a/ \(4x^2-4x+4+1=\left(2x-1\right)^2+4\ge4\) Giá trị nhỏ nhất của BT là 4

b/ \(x^2+4y^2+4xy=\left(x+2y\right)^2\ge0\) Giá trị nhỏ nhất của BT là 0

15 tháng 8 2020

a) 4x2 - 4x + 4 + 1 

= ( 4x2 - 4x + 1 ) + 4

= ( 2x - 1 )2 + 4

\(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+4\ge4\)

Dấu " = " xảy ra <=> 2x - 1 = 0 => x = 1/2

Vậy GTNN của biểu thức = 4 <=> x = 1/2

b) x2 + 4y2 + 4xy = ( x + 2y )2 

\(\left(x+2y\right)^2\ge0\forall x,y\)

Dấu " = " xảy ra <=> \(x+2y=0\Rightarrow2y=-x\Rightarrow y=\frac{-x}{2}\)

Vậy GTNN của biểu thức = 0 <=> y = -x/2

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa

Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!

7 tháng 6 2017

\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)

khi \(x=\frac{1}{3},y=\frac{1}{6}\)

3 tháng 11 2024

H= (2x+y)^2 - 2(2x+y) + 1+ y^2 - 2y + 1 + 1

H= (2x+y+1)^2 + (y+2)^2 + 1 

Min h là 1