Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nãy lộn nhé,em làm lại:
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+x^2+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)^2\right]+x^2+8\)
\(=\left(x+2y+1\right)^2+x^2+8\ge8\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\x+2y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-\frac{1}{2}\end{cases}}\)
Dạng này mình không quen cho lắm nên không chắc nha!
\(D=\left(x^2+4xy+2x+4y^2+4y+1\right)+8\)
\(=\left[x^2+2x\left(2y+1\right)+\left(2y+1\right)\right]+8\)
\(=\left(x+2y+1\right)^2+8\ge8\)
Dấu "=" xảy ra khi \(\left(x+2y+1\right)^2=0\Leftrightarrow2y+1=-x\)
Mà \(\left(x+2y+1\right)^2=x^2+2x\left(2y+1\right)+\left(2y+1\right)\)
\(=x^2-2x^2-x=-x^2-x=0\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Thay vào D loại x = -1 suy ra x = 0 tức là y = -1/2
\(A=-2x^2-10y^2+4xy+4x+4y+2016\)
\(=-2.\left(x^2+5y^2-4xy-4x-4y\right)+2016\)
\(=-2.\left(x^2+4y^2+4-4xy-4x+8y+y^2-12y+36\right)+2.36+2016\)
\(=-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\)
Ta có: \(\left(x-2y-2\right)^2+\left(y-6\right)^2\ge0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]\le0\)
\(\Rightarrow-2.[\left(x-2y-2\right)^2+\left(y-6\right)^2]+2088\le2088\)
\(\Rightarrow A\le2088\)
Vậy giá trị lớn nhất của \(A=2088\) khi: \(\hept{\begin{cases}x-2y-2=0\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2y+2\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=6\end{cases}}\)
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
C= 2x2 + 4y2 + 4xy - 3x -1
= (x2 + 4xy + 4y2) + (x2 - 3x + 9/4) - 13/4
= (x+2y)2 + (x-3/2)2 - 13/4
vì (x+2y)2 >=0
(x-3/2)2 >=0
=) MinC= -13/4 (dấu '=' xảy ra khi x=3/2 ; y=-3/4)
vậy ....
chúc bn hc tốt
a) Ta có A = 4x2 - 4x + 1 = (2x - 1)2 \(\ge0\forall x\)
Dấu "=" xảy ra <=> 2x - 1 = 0 => x = 0,5
Vậy GTNN của A là 0 khi x = 0,5
b) Ta có x2 + 4y2 + 4xy = x2 + 2xy + 2xy + 4y2 = x(x + 2y) + 2y(x + 2y) = (x + 2y)2 \(\ge0\forall x;y\)
Dấu "=" xảy ra <=> x + 2y = 0 => x = - 2y
Vậy GTNN của B là 0 khi x = -2y
a) 4x2 - 4x + 1 = ( 2x - 1 )2 ≥ 0 ∀ x
Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2
Vậy GTNN của biểu thức = 0 <=> x = 1/2
b) x2 + 4y2 + 4xy = ( x + 2y )2 ≥ 0 ∀ x ,y
Đẳng thức xảy ra <=> x + 2y = 0 => x = -2y
Vậy GTNN của biểu thức = 0 <=> x = -2y
a/ \(4x^2-4x+4+1=\left(2x-1\right)^2+4\ge4\) Giá trị nhỏ nhất của BT là 4
b/ \(x^2+4y^2+4xy=\left(x+2y\right)^2\ge0\) Giá trị nhỏ nhất của BT là 0
a) 4x2 - 4x + 4 + 1
= ( 4x2 - 4x + 1 ) + 4
= ( 2x - 1 )2 + 4
\(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+4\ge4\)
Dấu " = " xảy ra <=> 2x - 1 = 0 => x = 1/2
Vậy GTNN của biểu thức = 4 <=> x = 1/2
b) x2 + 4y2 + 4xy = ( x + 2y )2
\(\left(x+2y\right)^2\ge0\forall x,y\)
Dấu " = " xảy ra <=> \(x+2y=0\Rightarrow2y=-x\Rightarrow y=\frac{-x}{2}\)
Vậy GTNN của biểu thức = 0 <=> y = -x/2
Để mik suy nghĩ đã sau đó mik trả lời giúp bạn nhé!
\(x^2-4xy+4y^2+3x^2-2x+\frac{1}{3}-\frac{1}{3}\\ =\left(x-2y\right)^2+3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
khi \(x=\frac{1}{3},y=\frac{1}{6}\)