K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi I là giao điểm của BM và CN, IK là phân giác của góc BIC(\(K\in BC\))

BM là phân giác của góc ABC

=>\(\widehat{ABM}=\widehat{CBM}=\dfrac{\widehat{ABC}}{2}\)

CN là phân giác của góc ACB

=>\(\widehat{ACN}=\widehat{NCB}=\dfrac{\widehat{ACB}}{2}\)

Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)+60^0=180^0\)

=>\(2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=120^0\)

=>\(\widehat{IBC}+\widehat{ICB}=60^0\)

Xét ΔBIC có \(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)

=>\(\widehat{BIC}+60^0=180^0\)

=>\(\widehat{BIC}=120^0\)

Ta có: \(\widehat{NIB}+\widehat{BIC}=180^0\)(hai góc kề bù)

=>\(\widehat{NIB}+120^0=180^0\)

=>\(\widehat{NIB}=60^0\)

mà \(\widehat{NIB}=\widehat{MIC}\)(hai góc kề bù)

nên \(\widehat{MIC}=60^0\)

Ta có: IK là phân giác của góc BIC

=>\(\widehat{BIK}=\widehat{CIK}=\dfrac{\widehat{BIC}}{2}=60^0\)

Xét ΔBNI và ΔBKI có

\(\widehat{NIB}=\widehat{KIB}\left(=60^0\right)\)

IB chung

\(\widehat{NBI}=\widehat{KBI}\)

Do đó: ΔBNI=ΔBKI

=>BN=BK

Xét ΔCKI và ΔCMI có

\(\widehat{KIC}=\widehat{MIC}\left(=60^0\right)\)

IC chung

\(\widehat{KCI}=\widehat{MCI}\)

Do đó: ΔCKI=ΔCMI

=>CK=CM

Ta có: BN+CM

=BK+CK

=BC

24 tháng 3

giúp với các pro

 

17 tháng 2 2016

xem lại đề bài coi có cho tam giác ABC cân ko ! 

17 tháng 2 2016

dau bai chac dung roi nhung qua la kho that to nghi mai k ra

26 tháng 1 2016

vẽ hình                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 tháng 1 2016

tốn giấy quá nguyenmanhtrung ơi 

11 tháng 12 2016

-Gọi I là giao điểm của BM và CN.

-Kẻ tia ID là tia phân giác của góc BIC.

 

27 tháng 1 2016

Aquarius

27 tháng 1 2016

Bài 1:



+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o

→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ

+ Gọi CN∩BM=G

+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o

+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o

+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o

+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)

+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)

+ Ta có BC=BD+CD=BN+CM (đpcm)

 

25 tháng 12 2016

Gọi H là giao điểm của NC và BM

Vẽ HK là phân giác BHC => BHK = CHK = BHC/2

Có: A + ABC + ACB = 180o

=> 60o + ABC + ACB = 180o

=> ABC + ACB = 180o - 60o = 120o

=> ABC/2 + ACB/2 = 60o

Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2

Nên HBK + HCK = 60o

=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o

=> BHK = KHC = BHC/2 = 60o

Có: BHN + BHC = 180o ( kề bù)

=> BHN + 120o = 180o

=> BHN = 180o - 120o = 60o

Xét t/g BHK và t/g BHN có:

BHK = BHN = 60o (cmt)

BH là cạnh chung

NBH = KBH (gt)

Do đó, t/g BHK = t/g BHN (g.c.g)

=> BK = BN (2 cạnh tương ứng) (1)

Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)

=> KC = MC (2 cạnh tương ứng) (2)

Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)