K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

vẽ hình                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 tháng 1 2016

tốn giấy quá nguyenmanhtrung ơi 

17 tháng 2 2016

xem lại đề bài coi có cho tam giác ABC cân ko ! 

17 tháng 2 2016

dau bai chac dung roi nhung qua la kho that to nghi mai k ra

+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o 

→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ 

+ Gọi CN∩BM=G 

+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o 

+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o 

+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o 

+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng) 

+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng) 

+ Ta có BC=BD+CD=BN+CM (đpcm)

Nguồn: Chôm 

27 tháng 1 2016

Aquarius

27 tháng 1 2016

Bài 1:



+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o

→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ

+ Gọi CN∩BM=G

+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o

+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o

+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o

+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)

+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)

+ Ta có BC=BD+CD=BN+CM (đpcm)

 

22 tháng 3 2020

Bầm vào thống kê của mình để xem link:

Câu hỏi của Cathy Trang - Toán lớp 7 | Học trực tuyến

Tham khảo nha

26 tháng 1 2021

Gọi H là giao điểm của NC và BM

Vẽ HK là phân giác BHC => BHK = CHK = BHC/2

Có: A + ABC + ACB = 180o

=> 60o + ABC + ACB = 180o

=> ABC + ACB = 180o - 60o = 120o

=> ABC/2 + ACB/2 = 60o

Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2

Nên HBK + HCK = 60o

=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o

=> BHK = KHC = BHC/2 = 60o

Có: BHN + BHC = 180o ( kề bù)

=> BHN + 120o = 180o

=> BHN = 180o - 120o = 60o

Xét t/g BHK và t/g BHN có:

BHK = BHN = 60o (cmt)

BH là cạnh chung

NBH = KBH (gt)

Do đó, t/g BHK = t/g BHN (g.c.g)

=> BK = BN (2 cạnh tương ứng) (1)

Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)

=> KC = MC (2 cạnh tương ứng) (2)

Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)