Có bao nhiêu số nguyên dương n không vượt quá 1000 để
n+12/n2+9n-13 là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 5n+2 và 2n+7 cùng chia hết cho một số nguyên tố d(d€ N*)
=>5n+2˙:d;2n+7˙:d
=>2(5n+2)˙:d;5(2n+7)˙:d
=>5(2n+7)-2(5n+2)˙:d
=>10n+35-10n-4˙:d
=>31˙:d=>d=31
=>5n+2˙:31 và 2n+7˙:31
2n+7˙:31=>2n+7-31˙:31
=>2n-24˙:31=>2(n-12)˙:31
=>n-12˙:31(vì 2 và 31 nguyên tố cùng nhau)
=>n-12=31q(q€Z)
=>n=31q+12
=>A là ps tối giản thì n khác31q+12
n là số nguyên dương <2016
=>0<31q+12<2016
=>-12<31q<2004
=>-12/31<q<2004/31
=>0<=q<64,6
=>q nhận 65 gtrị để A là ps tối giản
Để n+13/n-2 là phân số tối giản thì:
n+13 chia hết cho n-2
<=> (n-2)+15 chia hết cho n-2
ta thấy: n-2 chia hết cho n-2
=> 15 phải chia hết cho n-2
=> n-2 thuộc Ư(15)
n-2 thuộc { 1: 3: 5: 15}
n thuộc { 3; 5; 7; 17}
Số chia hết cho 3 có dạng 3a ta có 0 < 3a ≤ 1000 ⇔ 0 < a < 333,3
Mà a nguyên nên có 333 số thỏa mãn
Số chia hết cho 5 có dạng 5b ta có 0 < 5b ≤ 1000 ⇔ 0 < b < 200
nên có 200 số thỏa mãn
Số chia hết cho cả 3 và 5 có dạng 15c ta có 0 < 15c ≤ 1000 ⇔ 0 < c < 66,6
nên có 66 số thỏa mãn
Do đó số các số thỏa mãn đề bài là 333 + 200 – 66 =467.
Chọn D.
Số chia hết cho 3 có dạng 3a ta có 0 < 3a ≤ 1000 ⇒ 0< a < 333,3 nên có 333 số thỏa mãn.
Số chia hết cho 5 có dạng 5b ta có 0 < 5b ≤ 1000 ⇒ 0< b < 200 nên có 200 số thỏa mãn.
Số chia hết cho cả 3 và 5 có dạng 15c ta có nên có 66 số thỏa mãn.
Do đó số các số thỏa mãn đề bài là 333 + 200 – 66 =467.
Chọn D.