Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đề bài là tìm số nguyên tố p nhỏ nhất em nhé.
Phân tích 360 ra thừa số nguyên tố:
\(360=3^2.2^3.5\)
Tìm ra một số nguyên tố khác 3,2,5 mà nhỏ nhất => Số 7
Vậy p = 7 và \(\frac{7}{360}\)là phân số tối giản.
2. \(420=2^2.3.5.7\)
=> Tìm ra số nguyên dương nhỏ nhất không chia hết cho 2, 3, 5, 7
=> Số 11
=> Hợp số bé nhất không chia hết cho 2, 3, 5, 7 là 11. 11 = 121 > 100
=> Không có hợp số a nào vượt quá 100 để a/420 là phân số tối giản.
Phân tích 360 ra thừa số nguyên tố
360=23.32.5
Vậy cần tìm 1 số nguyên tố mà 360 phân tích ra tsnt ko có, và nó nhỏ nhất. Chỉ có thể là 7
Phân tích 360 ra thừa số nguyên tố
360=2^3 .3^2 .5
Vậy cần tìm 1 số nguyên tố mà 360 phân tích ra tsnt ko có, và nó nhỏ nhất. Chỉ có thể là 7
Để P/360 tối giản thì (P; 360)=1
Tức là ta phải tìm P nguyên tố nhỏ nhất sao cho 360 không chia hết cho P
=> P = 7