Viết tổng sau thành tích :
a) ( 2x^2 + 3y ) ^3
b) ( x - 1 / 6 ) ^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (x + 1)3
= x3 + 3x21 + 3x12 + 1 (số 1 ở hai tích ko viết cx được nhá)
(bài này là công thức rồi)
Ta có : \(\left(x+\frac{1}{3}\right)^3=x^3+3x^2\frac{1}{3}+3x\left(\frac{1}{3}\right)^3+\frac{1}{3}^3\)
Còn lại tương tự nhá
a) \(3x^2-6x=3x\left(x-2\right).\)
b) Không thể phân tích thành nhân tử
c) \(4x^2\left(2x-y\right)-12x\left(2x-y\right)=\left(2x-y\right).\left(4x^2-12\right)=4\left(2x-y\right).\left(x^2-3\right)\)
d) \(7\left(x-3y\right)-2x\left(3y-x\right)=7\left(x-3y\right)+2x\left(x-3y\right)=\left(x-3y\right).\left(2x+7\right)\)
f) \(6\left(x-2y\right)-3\left(2y-x\right)=6\left(x-2y\right)+3\left(x-2y\right)=9\left(x-2y\right)\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Bài làm :
\(\text{a)}9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)
\(\text{b)}3x^4y^2+3x^3y^2+3xy^2+3y^2\)
\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)
\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)
\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)
\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)
\(\text{c)}\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)
\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)
\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)
\(d ) x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
a)\(\left(2x^2+3y\right)^3\)
=\(8x^5+36x^4y+54xy^2+27y^3\)
b)\(\left(x-\frac{1}{6}\right)^3\)
=\(x^3-\frac{1}{2}x^2+\frac{1}{12}x-\frac{1}{216}\)