Cho ht ABCD có A = B và BC = AD. Chứng minh rằng:
a) C/m: DE // BC
b)C/m: Tứ giác BDEC là ht cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1-->27 đâu rồi)
28.
AB=AD = BC => ABC cân
=> góc BAC = BCA
mà BCA= ACD (so le)
=> BCA= ACD
=> CA là tia phân giác góc c
..dpcm...
29.là hình thang cân
xét 2 tam giác AOC,BOD
đây là 2 tam giác cân ,chung có số đo góc đỉnh A = nhau (đđ)
=> 2 tam giac đồng dạng
=> góc C= góc D => AC\\ DC (2 góc so le = nhau)
lại có AB = CD => nó cân (2 đg chéo = nhau)
30.
a. hình thang cân
2 tam giác cân ADE ~ ABC => D=E => DE\\ BC (đồng vị)
BD= AB-AD = AC-AE = EC
b.
như trên đã cm DE = BD=EC => EB là tia phân giác goc B
=> E,D là chân đg phân giác hạ từ B,C đến AC,AB
a: góc A+góc C=180 độ
=>ABCD là tứ giác nội tiếp
ABCD là tứ giác nội tiếp
=>góc ADB=góc ACB và góc BDC=góc BAC
mà góc BCA=góc BAC(ΔBAC cân tại B)
nên góc ADB=góc BDC
=>DB là phân giác của góc ADC
b: ΔABD cân tại A
=>góc ABD=góc ADB
=>góc ABD=góc BDC
=>AB//CD
Xét tứ giác ABCD có
AB//CD
=>ABCD là hình thang
=>góc BAD+góc ADC=180 độ
mà góc A+góc C=180 độ
nên góc ADC=góc C
=>ABCD là hình thang cân
a: Xét ΔABC co AD/AB=AE/AC
nên DE//BC
b: Xét ΔDBM và ΔECM có
DB=EC
góc B=goc C
BM=CM
=>ΔDBM=ΔECM
b: Xét ΔADM và ΔAEM có
AD=AE
AM chung
MD=ME
=>ΔAMD=ΔAME
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác)(1)
Xét ΔABC có
CE là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(Tính chất tia phân giác)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)(cmt)
nên ED//BC(Định lí Ta lét đảo)
Xét tứ giác BEDC có ED//BC(cmt)
nên BEDC là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BEDC(ED//BC) có \(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
nên BEDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Ta có: \(\widehat{EDB}=\widehat{DBC}\)(ED//BC)
mà \(\widehat{DBC}=\widehat{EBD}\)(BD là tia phân giác)
nên \(\widehat{EDB}=\widehat{EBD}\)
Xét ΔEBD có \(\widehat{EDB}=\widehat{EBD}\)(cmt)
nên ΔEBD cân tại E(Định nghĩa tam giác cân)
hay ED=EB(đpcm)
(1-->27 đâu rồi)
28.
AB=AD = BC => ABC cân
=> góc BAC = BCA
mà BCA= ACD (so le)
=> BCA= ACD
=> CA là tia phân giác góc c
..dpcm...
29.là hình thang cân
xét 2 tam giác AOC,BOD
đây là 2 tam giác cân ,chung có số đo góc đỉnh A = nhau (đđ)
=> 2 tam giac đồng dạng
=> góc C= góc D => AC\\ DC (2 góc so le = nhau)
lại có AB = CD => nó cân (2 đg chéo = nhau)
30.
a. hình thang cân
2 tam giác cân ADE ~ ABC => D=E => DE\\ BC (đồng vị)
BD= AB-AD = AC-AE = EC
b.
như trên đã cm DE = BD=EC => EB là tia phân giác goc B
=> E,D là chân đg phân giác hạ từ B,C đến AC,AB