Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta BAD\)và \(\Delta ABC\)có:
\(\widehat{A}=\widehat{B}\)
\(AD=BC\)
\(AB\)chung
\(\Rightarrow\Delta BAD=\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow AC=BD\)(2 cạnh t.ư)
=>tứ giác ABCD là HTC
Cách 1 : Kẻ thêm đường phụ AC
Và đường phụ BD
Xét tam giác ADC và tam giác ABC ta có :
AC chung
AD = BC (gt)
^A = ^B (gt)
=> tam giác ADC = tam giác ABC
=> AB = DC ( 2 cạnh tương ứng bằng nhau )
hay 2 góc kề cạnh đáy bằng nhau => ABCD là hình thang
Cách 2 : Ta có : AD = BC gt
=> 2 cạnh bên bằng nhau Vậy ABCD là hình thang :))
(1-->27 đâu rồi)
28.
AB=AD = BC => ABC cân
=> góc BAC = BCA
mà BCA= ACD (so le)
=> BCA= ACD
=> CA là tia phân giác góc c
..dpcm...
29.là hình thang cân
xét 2 tam giác AOC,BOD
đây là 2 tam giác cân ,chung có số đo góc đỉnh A = nhau (đđ)
=> 2 tam giac đồng dạng
=> góc C= góc D => AC\\ DC (2 góc so le = nhau)
lại có AB = CD => nó cân (2 đg chéo = nhau)
30.
a. hình thang cân
2 tam giác cân ADE ~ ABC => D=E => DE\\ BC (đồng vị)
BD= AB-AD = AC-AE = EC
b.
như trên đã cm DE = BD=EC => EB là tia phân giác goc B
=> E,D là chân đg phân giác hạ từ B,C đến AC,AB
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a) Xét ΔABD có
M là trung điểm của AB(gt)
Q là trung điểm của AD(gt)
Do đó: MQ là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔCBD có
N là trung điểm của BC(gt)
P là trung điểm của CD(gt)
Do đó: NP là đường trung bình của ΔCBD(Định nghĩa đường trung bình của tam giác)
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà AC=BD(gt)
và \(NP=\dfrac{BD}{2}\)(cmt)
nên MN=NP
Xét tứ giác MQPN có
MQ//NP(cmt)
MQ=NP(cmt)
Do đó: MQPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành MQPN có MN=NP(cmt)
nên MQPN là hình thoi(Dấu hiệu nhận biết hình thoi)
Ta có: MQPN là hình thoi(cmt)
nên MP\(\perp\)QN(Hai đường chéo của hình thoi MQPN)
(1-->27 đâu rồi)
28.
AB=AD = BC => ABC cân
=> góc BAC = BCA
mà BCA= ACD (so le)
=> BCA= ACD
=> CA là tia phân giác góc c
..dpcm...
29.là hình thang cân
xét 2 tam giác AOC,BOD
đây là 2 tam giác cân ,chung có số đo góc đỉnh A = nhau (đđ)
=> 2 tam giac đồng dạng
=> góc C= góc D => AC\\ DC (2 góc so le = nhau)
lại có AB = CD => nó cân (2 đg chéo = nhau)
30.
a. hình thang cân
2 tam giác cân ADE ~ ABC => D=E => DE\\ BC (đồng vị)
BD= AB-AD = AC-AE = EC
b.
như trên đã cm DE = BD=EC => EB là tia phân giác goc B
=> E,D là chân đg phân giác hạ từ B,C đến AC,AB
ban ghi gi vay