Tìm các số nguyên a va nguyên b thoả mãn
a, [a] + [b] = 0
b, [a+5]+[b-2]=0
giải nhanh giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A*A+B*B+C*C=90
(A+B+C)*(A+B+C)=90
À 0 PHẢI SỐ NGUYÊN ĐÂU
a.
\(A=B\)
\(\Leftrightarrow\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{-16}{x^2-4}\);ĐK:\(x\ne\pm2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{-16}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2=-16\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4+16=0\)
\(\Leftrightarrow8x+16=0\)
\(\Leftrightarrow8\left(x+2\right)=0\)
\(\Leftrightarrow x=-2\left(ktm\right)\)
Vậy không có giá trị x thỏa mãn A=B
b.
\(A:B=\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\dfrac{-16}{\left(x-2\right)\left(x+2\right)}< 0\)
\(\Leftrightarrow\dfrac{x^2+4x+4-x^2+4x-4}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{-16}< 0\)
\(\Leftrightarrow\dfrac{8x}{16}>0\)
\(\Leftrightarrow\dfrac{x}{2}>0\)
\(\Leftrightarrow x>0\)
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
-4 < x < 3
các số nguyên thỏa mãn -4 < x < 3 là các số nguyên thuộc dãy số sau:
-3; -2; -1; 0; 1; 2;
Tổng các số nguyên thỏa mãn đề bài là:
(-3) + (-2) +(-1) + 0 + 1 + 2
= (-3) + ( -2 + 2) + ( -1 + 1)
= -3 + 0 + 0
= -3
b, -5 < x < 5
Các số nguyên thỏa mãn -5 < x < 5 là các số thuộc dãy số sau :
-4; -3; -2; -1; 0; 1; 2; 3; 4
Tổng các số nguyên thỏa mãn đề bài là:
-4 + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4
( -4 + 4) + ( -3 + 3) + ( -2 + 2) + (-1 + 1) + 0
= 0 + 0 + 0 + 0 + 0
= 0
a) |a| + |b| = 0.
Vì |a|\(\ge\)0;|b| \(\ge\)0,mà |a| + |b| = 0 => a = 0; b = 0.
b)|a+5|+|b-2|=0.
Vì |a+5|\(\ge\)0;|b-2|\(\ge\)0,mà |a+5|+|b-2|=0 => a + 5 = 0 và b - 2 = 0
=> a = 5 và b = 2
a) |a| + |b| = 0
=> a \(\ge\)0; b \(\ge\)0
Vậy a = 0; b = 0
b) |a+5| + |b-2| = 0
=> a + 5 \(\ge\)0; b - 2 \(\ge\)0
=> a = 0 + 5 = 5
b = 0 + 2 = 2