K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

a) Vế trái = a.(c + d) + b.( c+ d) - a.(b + c) - d.(b + c)

= a.[(c+ d) - (b + c)] + [b(c+d) - d.(b + c)]

= a.(d - b) + (bc + bd - db - dc) = a.(d - b) + c.(b - d) = a.(d - b) - c.(d - b) = (a - c).(d - b)  = Vế phải

Vậy....

b) làm  tương tự:

13 tháng 11 2015

a) (a+b) (c+d) - (a+d) (b+c) = (ac + ad + bc + bd) - (ab + ac +bd + cd) = ac + ad + bc + bd - ab -ac - bd - cd

 và bằng ad + bc - ab - cd = a( d-b ) + c( b-d ) = a (d-b) - c (d-b) = (a-c)(d-b) (dpcm)

p/s: ý B chứng minh tương tự.

 

 

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)

CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)

Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)

22 tháng 5 2023

Áp dụng BĐT Bunhiacopxki:

(�2+�2)(�2+�2)≥(��+��)2=��+��

CMTT : (�2+�2)(�2+�2)≥��+��

Ta có :(�2+�2)(�2+�2)+(�2+�2)(�2+�2)≥��+��+��+��=(�+�)(�+�)

26 tháng 12 2015

Có: Vế trái : (a - c)(b + d) - (a - d)(b + c) 

= ab + ad - bc - cd - ab - ac + bd + cd

= ad - bc - ac + bd

= ad - ac + bd + bc

= a(d - c) + b(d - c)

= (a + b)(d - c) (= vế phải)

Vậy đpcm

26 tháng 12 2015

BĐVT có,

=ab+ad-bc-cd-ab-ac+bd+cd

=ad-ac-bc+bd

=a(d-c)+b(d-c)

=(a+b)(d-c)=vế phải

suy ra đpcm

tik nha

11 tháng 11 2015

a. VT:(x-y)-(x-z)

= x-y-x+z

= z-y

VP:(z+x)-(y+x)

=z+x-y-x

=z-y

=> VT=VP => đpcm.

b. VT:(x-y+z)-(y+z-x)-(x-y)

= x-y+z-y-z+x-x+y

= x-y

VP:(z-y)-(z-x)

= z-y-z+x

= x-y

=> VT=VP => đpcm.

c. VT: a(b+c)-b(a-c)

=ab+ac-ab+bc

= ac+bc

VP: (a+b)c

= ac+bc

=> VT=VP => đpcm.

d. VT: a(b-c)-a(b+d)

= ab-ac-ab-ad

= -ac-ad

VP: -a(c+d)

= -ac-ad 

=> VT=VP => đpcm

tương tự...