K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)

\(\dfrac{1}{5^2}< \dfrac{1}{4\cdot5}=\dfrac{1}{4}-\dfrac{1}{5}\)

...

\(\dfrac{1}{100^2}< \dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)

Do đó: \(A=\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=>\(A< \dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\)

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

17 tháng 1 2017

a) A=4+42+43+...4100 => 4A=42+43+44+...+4101

=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm

b) Tương tự

24 tháng 9 2017

Minh Quân yêu Thanh Hiền

22 tháng 2 2017

\(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+....+\frac{1}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-2}{3!}+....+\frac{100-99}{100!}\)

\(=\frac{2}{2!}-\frac{1}{2!}+\frac{1}{2!}-\frac{2}{3!}+....+\frac{100}{100!}-\frac{99}{100!}\)

\(=\frac{2}{2!}-\frac{99}{100!}=1-\frac{99}{100!}< 1\)

\(\Rightarrow A< 1\) (DPCM)

Đinh Đức Hùng sướng

Được làm CTV

Tui còn chả được

24 tháng 1

T_T

NV
25 tháng 7 2021

Đặt \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\) (đpcm)

1/4^2<1/3*4

1/5^2<1/4*5

...

1/100^2<1/99*100

=>A<1/3-1/4+1/4-1/5+...+1/99-1/100

=>A<1/3-1/100<1/3