K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{9}=\dfrac{DC}{12}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)

mà DB+DC=BC=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{15}{7}\)

=>\(DB=3\cdot\dfrac{15}{7}=\dfrac{45}{7}\left(cm\right);DC=4\cdot\dfrac{15}{7}=\dfrac{60}{7}\left(cm\right)\)

b: Vì \(\dfrac{BD}{CD}=\dfrac{45}{7}:\dfrac{60}{7}=\dfrac{3}{4}\)

nên \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)

13 tháng 3 2020

Trong ΔABC, ta có: AD là đường phân giác của (BAC)

Suy ra: \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

uy ra: \(\frac{DB}{DB+DC}=\frac{15}{15+20}\)(tính chất tỉ lệ thức)

Suy ra: \(\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}cm\)

\(\Rightarrow DC=BC-BD=25-\frac{75}{7}=\frac{100}{7}cm\)

b. Kẻ AH ⊥ BC

Ta có: SABD = 1/2 AH.BD; SADC = 1/2 AH.DC

Suy ra :\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)

\(\frac{DB}{DC}=\frac{15}{20}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ADC}}=\frac{3}{4}\)

19 tháng 4 2020

a) Xét tam giác BAD và CAD có:

AB=AC=14cm

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác)

AD cạnh chung

=> \(\Delta BAD=\Delta CAD\left(c.g.c\right)\)

=> BD=CD

Mà BD+CD=BC=12 cm

=> BD=DC=12:2=6(cm)

b) Vì AB=AC, BD=DC

=> AD là đường trung trực của BC

=> AD _|_ BC

=> \(S_{\Delta ABD}=\frac{1}{2}AD\cdot BD;S_{\Delta CAD}=\frac{1}{2}AD\cdot DC\)

\(\frac{S_{\Delta ABD}}{S_{\Delta CAD}}=\frac{AD\cdot BD}{AD\cdot DC}=\frac{AD}{DC}=1\)

1 tháng 3 2018

Hình tự vẽ lấy nhé

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\Rightarrow\frac{DB}{DC}=\frac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

\(\Rightarrow\frac{DB}{DB+DC}=\frac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\Rightarrow\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}\left(cm\right)\)

b) Kẻ \(AH\perp BC\)

Ta có: \(S_{ABD}=\frac{1}{2}AH.BD\)

\(S_{ACD}=\frac{1}{2}AH.CD\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.CD}=\frac{BD}{DC}\)

Mà \(\frac{DB}{DC}=\frac{15}{12}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{3}{4}\left(đpcm\right)\)

23 tháng 2 2022

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\dfrac{DB}{DC}\)=\(\dfrac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\dfrac{DC}{DB}\)=\(\dfrac{15}{20}\)

\(\dfrac{DB}{DB+DC}\)=\(\dfrac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\dfrac{DB}{BC}\)=\(\dfrac{15}{35}\)⇒DB=\(\dfrac{15}{35}\).BC=\(\dfrac{15}{35}\).25=\(\dfrac{75}{5}\)(cm)

b) Kẻ AH⊥BC

Ta có:\(S_{ABD}\)=\(\dfrac{1}{2}\)AH.BD

\(S_{ACD}\)=\(\dfrac{1}{2}\)AH.CD

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{\dfrac{1}{2}AH.BD}{\dfrac{1}{2}AH.CD}\)=\(\dfrac{BD}{DC}\)

Mà \(\dfrac{DB}{DC}\)=\(\dfrac{15}{12}\)=\(\dfrac{3}{4}\)

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{3}{4}\)(đpcm)

 

22 tháng 4 2016

a,theo tính chất đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{14}{16}=\frac{7}{8}\)

=> BD=7/8 CD

Mà BD+CD=BC=12

<=> 7/8CD+CD=12

<=> CD=6,4cm

=> BD=5.6cm

22 tháng 4 2016

b, vì tam giác ABD và ACD có chung đường cao hạ từ A nên \(\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{7}{8}\)

13 tháng 9 2023

a) Ta có: \(BD + DC = BC \Rightarrow DC = BC - BD = 10 - BD\)

Vì \(AD\) là phân giác của góc \(BAC\) nên theo tính chất đường phân giác ta có:

\(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}} \Leftrightarrow \frac{{BD}}{{10 - BD}} = \frac{6}{8} \Leftrightarrow 8BD = 6.\left( {10 - BD} \right) \Rightarrow 8BD = 60 - 6BD\)

\( \Leftrightarrow 8BD + 6BD = 60 \Leftrightarrow 14BD = 60 \Rightarrow BD = \frac{{60}}{{14}} = \frac{{30}}{7}\)

\( \Rightarrow DC = 10 - \frac{{30}}{7} = \frac{{40}}{7}\)

Vậy \(BD = \frac{{30}}{7}cm;DC = \frac{{40}}{7}cm\).

b) Kẻ \(AE \bot BC \Rightarrow AE\) là đường cao của tam giác \(ABC\).

Vì \(AE \bot BC \Rightarrow AE \bot BD \Rightarrow AE\)là đường cao của tam giác \(ADB\)

Diện tích tam giác \(ADB\) là:

\({S_{ADB}} = \frac{1}{2}BD.AE\)

Vì \(AE \bot BC \Rightarrow AE \bot DC \Rightarrow AE\)là đường cao của tam giác \(ADC\)

Diện tích tam giác \(ADC\) là:

\({S_{ADC}} = \frac{1}{2}DC.AE\)

Ta có: \(\frac{{{S_{ADB}}}}{{{S_{ADC}}}} = \frac{{\frac{1}{2}AE.BD}}{{\frac{1}{2}AE.CD}} = \frac{{BD}}{{DC}} = \frac{{\frac{{30}}{7}}}{{\frac{{40}}{7}}} = \frac{3}{4}\).

Vậy tỉ số diện tích giữa \(\Delta ADB\) và \(\Delta ADC\) là \(\frac{3}{4}\).

31 tháng 3 2017

a) Xét tam giác ABD và ACD

    góc BAD = góc CAD

    AD chung

=> 2 tam giác đồng dạng

AB/AC = BD/DC => DC = 7 => BC = 12

b) SABD / SACD = ( BD/DC ) ^2 = 25/49