Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Vậy: BC=20cm
a)\(\dfrac{SABD}{SACD}=\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{12}{16}=\dfrac{3}{4}\)
b) Vì \(\Delta ABC\) là tam giác vuông nên:
Áp dụng định lí Pi- ta- go: \(BC^2=AB^2+AC^2\\ BC^2=400\\ BC=20cm\)
c) Vì BC= BD + CD= 20 cm
và \(\dfrac{BD}{CD}=\dfrac{3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\\ \left\{{}\begin{matrix}\dfrac{BD}{3}=\dfrac{20}{7}\Rightarrow BD=\dfrac{60}{7}cm\\\dfrac{CD}{4}=\dfrac{20}{7}\Rightarrow CD=\dfrac{80}{7}cm\end{matrix}\right.\)
d)\(SABC=\dfrac{1}{2}AH\cdot BC\\ \Rightarrow AH=\dfrac{SABC}{BC}=\dfrac{12\cdot16}{20}=\dfrac{48}{5}=9,6cm\)
a: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
b: BC=căn 16^2+12^2=20cm
c: AD là phân giác
=>BD/3=CD/4=(BD+CD)/(3+4)=20/7
=>BD=60/7cm; CD=80/7cm
d: AH=12*16/20=192/20=9,6cm
`Answer:`
Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.
a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`
\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)
b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`
c. Ta có: `BC=BD+CD=20cm`
Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)
d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
A là phân giác góc BAC => \(\frac{DC}{DB}\)=\(\frac{AC}{AB}\)=\(\frac{16}{12}\)=\(\frac{4}{3}\)=> \(\frac{DC+DB}{DB}\)=\(\frac{4+3}{3}\)=\(\frac{7}{3}\)
=> \(\frac{BC}{DB}\)=\(\frac{7}{3}\)=> DB= \(\frac{3}{7}BC\)=\(\frac{60}{7}\)cm
=> DC = \(\frac{80}{7}\)cm.
Kẻ DE vuông góc với AC
DE vuông góc với AC và AB vuông góc với AC => DE song song với AB
áp dụng hệ quả của định lý Ta-let,ta có;
\(\frac{DE}{AB}\)=\(\frac{CD}{CB}\)=\(\frac{\frac{80}{7}}{20}\)=\(\frac{4}{7}\)=> DE= \(\frac{4}{7}AB\)=\(\frac{48}{7}\)cm
Diện tích tam giác ACD: S\(_{ACD}\)= \(\frac{1}{2}DE.AC\)=\(\frac{1}{2}.\frac{48}{7}.16\)=\(\frac{384}{7}\)cm\(^2\)
Diện tích tam giác ABD: S\(_{ABD}\)= S\(_{ABC}\)-S\(_{ACD}\)= \(\frac{1}{2}AC.AB\)-\(\frac{384}{7}\)= \(\frac{288}{7}\)cm\(^2\)
Tỷ lệ diện tích tam giác ABD và diện tích tam giác ACD là :\(\frac{3}{4}\)
Độ dài cạnh BC là : BC =\(\sqrt{AB^2+AC^2}\)= 20cm
BD=\(\frac{60}{7}cm\)CD =\(\frac{80}{7}cm\)
Chiều cao AH : S\(_{ABC}\)= \(\frac{1}{2}AC.AB\)=\(\frac{1}{2}AH.BC\)=> AH = \(\frac{AB.AC}{BC}\)=\(\frac{12.16}{20}\)=\(\frac{48}{5}\)cm
a: BD/CD=12/16=3/4
=>S ABD/ SACD=3/4
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
AD là phân giác
=>BD/3=CD/4=20/7
=>BD=60/7cm; CD=80/7cm
\(AH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
c: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
d: BD/CD=3/4
=>BD/3=CD/4
mà BD+CD=10
nên BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
áp dụng đinh lí pi-ta-go, ta tính được BC=20cm (1)
mà \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)( phân giác AD)\(\Leftrightarrow\dfrac{BD}{CD}=\dfrac{12}{16}=\dfrac{3}{4}\) (2)
từ (1),(2)\(\Rightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\\CD=\dfrac{80}{7}\end{matrix}\right.\)(3)
ta có \(AD=\dfrac{AB.AC}{BD}=9,6\)(4)
từ (3),(4)\(\Rightarrow\left\{{}\begin{matrix}S_{ABD}=\dfrac{288}{7}\\S_{ACD}=\dfrac{384}{7}\end{matrix}\right.\)\(\Rightarrow\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)
áp dụng đ/l py ta go trong tam giác vuông ABC có
BC ^2 =AB^2 +AC^2 =>12^2 + 16^2=400
=> BC =\(\sqrt{400}\)=20cm
ta có AD là phân giác của tam giác ABC
=> \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)
áp dụng tính chất tỉ lệ thức ta có
\(\dfrac{BD+DC}{DC}=\dfrac{AB+AC}{AC}hay\dfrac{20}{DC}=\dfrac{28}{16}\)
=> DC=\(\dfrac{80}{7}\)cm
=> BD=BC -DC=20-\(\dfrac{80}{7}\)=\(\dfrac{60}{7}\)cm
kẻ AH vuông góc vs BC (H thuộc BC)
gọi k là tỉ số diện tích 2 tam giác\(\dfrac{SADB}{SADC}=\dfrac{\dfrac{1}{2}\cdot AH\cdot BD}{\dfrac{1}{2}\cdot AH\cdot DC}=k^2=>k=\dfrac{BD}{DC}=\dfrac{\dfrac{60}{7}}{\dfrac{80}{7}}=\dfrac{3}{4}=>k^2=\left(\dfrac{3}{4}\right)^2=\dfrac{9}{16}\)
xét tam giác ABH và tam giác CBA
góc AHB=BAC(=90 độ)
góc B chung
=> tam giác ABH đồng dạng vs tam giác CBA (g.g)
=>AH/CA=AB/BC=> AH/16=12/20=> AH =9.6cm