Tìm số nguyên n để phân số n+8/n+5 nhận giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
\(A=\frac{5n-9}{2n-5}=\frac{6n-15-n+6}{2n-5}=\frac{3\left(2n-5\right)-n+6}{2n-5}=3-\frac{n-6}{2n-5}\)
Để A nhận gt nguyên thì n-6 chia hết cho 2n-5 hay 6 chia hết cho n-5 => n-5 thuộc Ư(6)={1;-1;2;-2;3;-3;6;-6}
=> n = {6;4;7;3;8;2;11;-1}
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Để phân số n+4/n+1 là số nguyên
Thì (n+4) chia hết cho (n+1)
(n+1+3) chia hết cho (n+1)
Vì (n+1) chia hết cho (n+1) nên 3 chia hết cho (n+1)
Suy ra:(n+1) thuộc Ư(3)=(1;-1;3;-3)
+)n+1=1 thì n=0
+)n+1=-1 thì n=-2
+)n+1=3 thì n=2
+)n+1=-3 thì n=-4
Vậy n=(0;-2;2;-4)
\(\dfrac{n+4}{n+1}\) nhận giá trị nguyên thì n+ 1 phải khác 0
=> n khác -1
Để A nhận giá trị nguyên thì n+3 phải chia hết cho n-5
Ta có n+3 chc n-5
=) ( n-5)+8 chc n-5
Mà n-5 chc n-5
=) 8 chc n-5
=) n-5 thuộc Ư(8) = { 1;-1;2;-2;4;-4;8;-8}
Đến đây lập bảng xét ra nhá
(p/s : chc = chia hết cho)
Có \(A=\frac{n+3}{n-5}\left(n\inℤ\right)\)
Để A nhận giá trị nguyên thì:
\(\left(n+3\right)⋮\left(n-5\right)\)
\(\Rightarrow\left(n-5\right)+8⋮\left(n-5\right)\)
Mà \(\left(n-5\right)⋮\left(n-5\right)\Rightarrow8⋮\left(n-5\right)\)
\(\Rightarrow\left(n-5\right)\inƯ\left(8\right)\)
\(Ư\left(8\right)=\left\{1;-1;8;-8\right\}\)
\(\Rightarrow\left(n-5\right)\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Rightarrow n\in\left\{6;5;7;3;9;1;13;-3\right\}\)
Vậy n \(\in\left\{6;5;7;3;9;1;13;-3\right\}\)
\(\dfrac{n+8}{n+5}=\dfrac{n+5+3}{n+5}\\=1+\dfrac{3}{n+5}\)
Để phân số trên nhận gt nguyên thì : \(\dfrac{3}{n+5}\inℤ\) (n nguyên)
=> 3 chia hết cho (n+5)
=> n+5 thuộc Ư(3)={1;-1;3;-3}
=> n thuộc {-4;-6;-2;-8} (thỏa mãn)
Vậy n thuộc {-4;-6;-2;-8} là 4 giá trị nguyên thỏa đề
Ta có:
n + 8 = n + 5 + 3
Để phân số đã cho nhận giá trị nguyên thì 3 ⋮ (n + 5)
⇒ n + 5 ∈ Ư(3) ={-3; -1; 1; 3}
⇒ n ∈ {-8; -6; -4; -2}