Cho x,y,z là các số thực thỏa mãn
Y + z + 1/x = x + z + 2/y = x + y - 3/z = 1 /x + y + z
Tính giá trị của biểu thức A = 2016 .x+ y^2017 + z^2017
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)
Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)
Dễ dàng tìm được x;y;z rồi thay vào b thức
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)
Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)
Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)
=> x = 1/2
Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)
=> y = 5/6
Lại có x + y + z = 1/2
=> 1/2 + 5/6 + z = 1/2
=> 5/6 + z = 0
=> z = -5/6
Khi đó A = 2016X + y2017 + z2017
= 2016.1/2 + (5/6)2017 - (5/6)2017
= 1008
Vậy A = 1008
bạn chịu khó gõ link này lên google
https://olm.vn/hoi-dap/detail/60436537466.html
\(\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}{\frac{1}{x+y+x}}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)=1\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left[z\left(x+y+z\right)+xy\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
B=\(\left(x+y\right)\left(y+z\right)\left(z+x\right).M=0\)
y x 8,01 - y : 100 = 38
y x 8,01 - y x 0,01 = 38
y x ( 8,01 - 0,01 ) = 38
y x 8 = 38
y = 38 : 8
mk chắc chắn
p/s tham khảo nhé ^_^
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(=\dfrac{1}{x+y+z}\)
\(\Rightarrow\dfrac{1}{x+y+z}=2\) và \(x+y+z=\dfrac{1}{2}\)
+) \(\dfrac{y+z+1}{x}=2\)
\(\Rightarrow y+z+1=2x\)
\(\Rightarrow x+y+z+1=3x\)
\(\Rightarrow3x=1+\dfrac{1}{2}\)
\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)
Tương tự như trên, ta tìm được \(y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay giá trị của x, y, z vào A ta được:
\(A=2016.\dfrac{1}{2}+\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\)
\(=1008\)
Vậy A = 1008
Lời giải:
Áp dụng TCDTSBN:
$\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2$
$\Rightarrow x+y+z=\frac{1}{2}$
Có:
$\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2$
$\Rightarrow \frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=3$
$\Rightarrow \frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3$
$\Rightarrow \frac{1,5}{x}=\frac{2,5}{y}=\frac{-2,5}{z}=3$
$\Rightarrow x=0,5; y=\frac{5}{6}; z=\frac{-5}{6}$