(1-1/4)x(1-1/9)x(1-1/16)x........x(1-1/900)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{900}-1\right)\)
\(=\left(\frac{1}{2}-1\right)\left(\frac{1}{2}+1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}-1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{30}-1\right)\left(\frac{1}{30}+1\right)\)
\(=\frac{-1}{2}.\frac{3}{2}.\frac{-2}{3}.\frac{4}{3}.\frac{-3}{4}.\frac{5}{4}...\frac{-29}{30}.\frac{31}{30}=-\frac{31}{60}\)
(1-1/4).(1-1/9).(1-1/16)....(1-1/100).(1-1/121)
=3/4.8/9.15/16...99/100.120/121
=(1.3/2.2).(2.4/3.3).(3.5/4.4)....(9.11/10.10).(10.12/11.11)
=1.3.2.4.3.5...9.11.10.12/2.2.3.3.4.4...10.10.11.11
=(2.3.4...9.10.11).(3.4.5...10.12)/(2.3.4...9.10.11).(2.3.4....10.11)
=12/2.11
=6/11
nha
\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{99}{100}\times\frac{120}{121}=\frac{3\times8\times15\times...\times99\times120}{4\times9\times16\times...\times100\times121}\)
\(\frac{\left(1\times3\right)\times\left(2\times4\right)\times\left(3\times5\right)\times...\times\left(9\times11\right)\times\left(10\times12\right)}{\left(2\times2\right)\times\left(3\times3\right)\times\left(4\times4\right)\times...\times\left(10\times10\right)\times\left(11\times11\right)}=\frac{\left(1\times2\times3\times...\times10\right)\times\left(3\times4\times5\times...\times12\right)}{\left(2\times3\times...\times11\right)\times\left(2\times3\times...\times11\right)}=\frac{12}{11\times2}=\frac{6}{11}\)
(1-1/4).(1-1/9).(1-1/16)....(1-1/100).(1-1/121)
=3/4.8/9.15/16...99/100.120/121
=(1.3/2.2).(2.4/3.3).(3.5/4.4)....(9.11/10.10).(10.12/11.11)
=1.3.2.4.3.5...9.11.10.12/2.2.3.3.4.4...10.10.11.11
=(2.3.4...9.10.11).(3.4.5...10.12)/(2.3.4...9.10.11).(2.3.4....10.11)
=12/2.11
=6/11
Bạn ấn vào chữ "Câu hỏi tương tự" để tham khảo nhé
( nếu ko bt thì copy link này : https://olm.vn/hoi-dap/tim-kiem?id=259990292185&id_subject=1&q=+++++++++++[+1-1/4+]+x+[1-1/9+]x+[+1-+1/16+]+x..........x+[+1-1/100+]+x+[+1-+1/121+]++++++++++ )
\(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\left(1-\frac{1}{121}\right)\)
=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{99}{100}.\frac{120}{121}\)
=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{3.3}.....\frac{9.11}{10.10}.\frac{10.12}{11.11}\)
=\(\frac{\left(1.2.3.....9.10\right)\left(3.4.5.....11.12\right)}{\left(2.3.4.5.....10.11\right)\left(2.3.4.5....10.11\right)}\)
=\(\frac{12}{11.2}\)
=\(\frac{6}{11}\)
\(\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\cdot...\cdot\left(1-\dfrac{1}{900}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{30}\right)\cdot\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{30}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{29}{30}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{31}{30}\)
\(=\dfrac{1}{30}\cdot\dfrac{31}{2}=\dfrac{31}{60}\)