K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

search mạn bn à. Mà bài này dễ CM mà công thức trong sách giáo khoa lớp 7 hả.......

1 tháng 10 2017

a)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)

Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)

b)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+2=\frac{c}{d}+2\Leftrightarrow\frac{a+2b}{b}=\frac{c+2d}{d}\)(đpcm)

2 tháng 10 2017

bang@@2

27 tháng 8 2017

\(\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\)\(\in Z\)=> ad+bc\(⋮\)bd (1). Ta không xét những trường hợp b=d=1

Trong trường hợp b=d thì ta có a+c\(⋮\) b

Ta chứng minh rằng nếu b khác d thì a+c ko chia hết cho b

Xét b>d ( trường hợp b<d chứng minh tương tự)

Giả sử b=d+k ( k >0, k\(\in Z\))

Thay b=d+k vào (1) ta có ad+c(d+k)\(⋮\)bd

=> ad+cd+ck \(⋮\)bd

=>d(a+c)+ck\(⋮\)bd

Tới đây ta thấy rằng nếu a+c\(⋮\)b thì d(a+c)\(⋮bd\)=> ck\(⋮\)bd.

Tuy nhiên (c,d)=1 và k<b nên k ko chia hết cho b, hơn nữa c ko thể chia hết cho b vì nếu thế thì a+c:b=> a:b=> (a,b)=b\(\ne1\)

Do đó ck ko chia hết cho bd, mâu thuẫn => Với b khác d thì a+c ko chia hết cho b

=> ĐPCM

27 tháng 8 2017

help me

jifugfigui

17 tháng 7 2017

sai đề

15 tháng 1 2019

Lời giải:

Có 44 số a,b,c,da,b,c,d và 33 số dư có thể xảy ra khi chia một số cho 33 là 0,1,20,1,2

Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất [43]+1=2[43]+1=2 số có cùng số dư khi chia cho 3

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,da,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 44 là a,ba,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,da,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,da,b,c,d có số dư khi chia cho 44 lần lượt là 0,1,2,30,1,2,3

⇒c−a⋮2;d−b⋮2⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

15 tháng 1 2019

Cho 4 số nguyên phân biệt a,b,c,d. Chứng minh rằng : (a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12

 Giải

Không mất tổng quát giả sử đó là a,b⇒a−b⋮3

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3

Mặt khác:

Trong 4 số a,b,c,d

Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b

⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3

⇒c−a⋮2;d−b⋮2

⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4

Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12

Ta có đpcm,

13 tháng 11 2016

ẹc mình lớp 7