K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

a)   ta có \(x^{20}=x^{10}< =>x^{20}-x^{10}=0\)

           <=> \(x^{10}\left(x^{10}-1\right)=0\)

           <=>\(\orbr{\begin{cases}x^{10}=0\\x^{10}=1\end{cases}}\)  

        <=> \(\orbr{\begin{cases}x=0\\x=+-1\end{cases}}\)

b) ta có \(\left(x-2\right)^{2018}>=0\)

             \(\left(y-1\right)^{2020}>=0\)

=> \(\left(x-2\right)^{2018}+\left(y-1\right)^{2020}>=0\)

 dấu = xảy ra <=> \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)

3 tháng 9 2017

thank you very much!!!

`@` `\text {Ans}`

`\downarrow`

`a)`

`13/50 + 9% + 41/100 + 0,24`

`= 0,26 + 0,09 + 0,41 + 0,24`

`= (0,26 + 0,24) + (0,09 + 0,41)`

`= 0,5 + 0,5`

`= 1`

`b)`

`2018 \times 2020 - 1/2017 + 2018 \times 2019`

`= 2018 \times (2020 + 2019) - 1/2017`

`= 2018 \times 4039 - 1/2017`

`= 8150702`

`c)`

`1/2 + 1/6 + 1/12 + 1/20 +1/30 +1/42`

`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)

`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}\)

`=`\(1-\dfrac{1}{7}\)

`= 6/7`

12 tháng 6 2023

\(a,\dfrac{13}{50}+9\%+\dfrac{41}{100}+0,24\\ 0,26+0,09+0,41+0,24\\ =\left(0,26+0,24\right)+\left(0,09+0,41\right)\\ =0,5+0,5\\ =1\\ b,2018\times2020-\dfrac{1}{2017}+2018\times2019\\ =2018\times\left(2020+2019\right)-\dfrac{1}{2017}\\ =2018\times4039-\dfrac{1}{2017}\\ =3150702-\dfrac{1}{2017}\\ c,\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\\ =1-\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}.........+\dfrac{1}{6}-\dfrac{1}{7}\\ =1-\dfrac{1}{7}\\ =\dfrac{6}{7}\)

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gtx2xy(5x5y)x+8=0(xy)(x5)(x5)=3(5x)(xy1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT

24 tháng 3 2021
Chịu nha bạn
25 tháng 7 2020

A=|x+35|+24

ta có |x+35| >=0 với mọi x => |x+35|+24 >= 24

=> minA=24. dấu "=" xảy ra <=> x+35=0 <=> x=-35

B=|x+10|+2018

ta có |x+10| >=0 với mọi x => |x+10|+2018 >= 2018

=> minA=2018. dấu "=" xảy ra <=> x+10=0 <=> x=-10

C=|x-1|+|y+2|+2020

ta có |x-1| >=0 với mọi x, |y+2| >=0 với mọi y

=> |x-1|+|y+2|>=0 với mọi x,y => |x-1|+|y+2|+2020 >=2020

=> minC=2020. dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

25 tháng 7 2020

\(/x+35/\ge0< =>\)\(A\ge24\)Dấu = xảy ra khi \(x=-35\)

\(/x+10/\ge0< =>B\ge2018\)Dấu = xảy ra khi \(x=-10\)

\(\hept{\begin{cases}/x-1/\ge0\\/y+2/\ge0\end{cases}}< =>C\ge2020\)Dấu = xảy ra khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé