Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
Lập bảng xét dấu nhé :
x \(\frac{1}{3}\) 2015 |
x - 2015 - - 0 + |
3x - 1 - 0 + + |
Th 1 : \(x< \frac{1}{3}\) pt trở thành : \(2015-x+1-3x=0\)
\(\Leftrightarrow2016-4x=0\)
\(\Leftrightarrow4x=2016\)
\(\Leftrightarrow x=504\) (loại)
Th2 : \(\frac{1}{3}\le x< 2015\) pt trở thành : \(2015-x+3x-1=0\)
<=> 2014 - 2x = 0
<=> 2x = 2014
<=> x = 1007 (t/m)
Th3 : \(x\ge2015\) thì pt trở thành : \(x-2015+3x-1=0\)
<=> 4x - 2016 = 0
<=> 4x = 2016
<=> x = 504
Vậy ...................................
Đáp án C nhé !