Bài 2. (2 điểm) Cho hai hàm số $\left(d \right): \, y=2x - 4$ và $\left(d \right): \, y=x+4$.
a. Vẽ đồ thị hai hàm số trên cùng mặt phẳng tọa độ?
b. Gọi giao điểm của đường thẳng $\left(d \right)$ và $\left(d' \right)$ với trục $Oy$ là $N$ và $M$, giao điểm của hai đường thẳng là $Q$. Xác định tọa độ điểm $Q$ và tính diện tích $\Delta MNQ$?
a:
b: Phương trình hoành độ giao điểm là:
2x-4=x+4
=>2x-x=4+4
=>x=8
Thay x=8 vào y=x+4, ta được:
y=8+4=12
Vậy: Q(8;12)
Tọa độ N là:
\(\left\{{}\begin{matrix}x=0\\y=2\cdot0-4=-4\end{matrix}\right.\)
Vậy: N(0;-4)
Tọa độ M là:
\(\left\{{}\begin{matrix}x=0\\y=0+4=4\end{matrix}\right.\)
Vậy: M(0;4)
M(0;4); N(0;-4); Q(8;12)
\(MN=\sqrt{\left(0-0\right)^2+\left(-4-4\right)^2}=8\)
\(MQ=\sqrt{\left(8-0\right)^2+\left(12-4\right)^2}=\sqrt{8^2+8^2}=8\sqrt{2}\)
\(NQ=\sqrt{\left(8-0\right)^2+\left(12+4\right)^2}=\sqrt{8^2+16^2}=8\sqrt{5}\)
Xét ΔMNQ có \(cosMNQ=\dfrac{NM^2+NQ^2-MQ^2}{2\cdot NM\cdot NQ}=\dfrac{256}{2\cdot8\cdot8\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
=>\(sinMNQ=\sqrt{1-\left(\dfrac{2}{\sqrt{5}}\right)^2}=\dfrac{1}{\sqrt{5}}\)
Diện tích ΔMNQ là:
\(S_{MNQ}=\dfrac{1}{2}\cdot NM\cdot NQ\cdot sinMNQ\)
\(=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{5}}\cdot8\cdot8\sqrt{5}=\dfrac{64}{2}=32\)