K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2024

Đk: \(-1< x< 1\)

Ta có \(2\sqrt{2022\left(1-x^2\right)}\le2023-x^2\) 

Nếu \(0\le x< 1\) thì \(x\left(x+2021\right)\ge0\) 

\(\Leftrightarrow x^2+2021x\ge0\)

\(\Leftrightarrow2023-x^2\le2021x+2023\)

\(\Rightarrow\) \(2\sqrt{2022\left(1-x^2\right)}\le2023-x^2\le2021x+2023\)

\(\Leftrightarrow2\sqrt{2022}\le\dfrac{2021x+2023}{\sqrt{1-x^2}}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2022=1-x^2\\x=0\end{matrix}\right.\), vô lý.

Vậy nếu \(0\le x< 1\) thì BĐT đúng.

Xét \(-1< x< 0\) thì đặt \(x=-t\left(0< t< 1\right)\)

BĐT cần chứng minh \(\Leftrightarrow\dfrac{2023-2021t}{\sqrt{1-t^2}}\ge2\sqrt{2022}\)

Ta có \(2023-2021t\) 

\(=2022-2022t+1+t\)

\(=2022\left(1-t\right)+\left(1+t\right)\)

\(\ge2\sqrt{2022\left(1-t\right)\left(1+t\right)}\)

\(=2\sqrt{2022\left(1-t^2\right)}\)

\(\Leftrightarrow\dfrac{2023-2021t}{\sqrt{1-t^2}}\ge2\sqrt{2022}\)

Dấu "=" xảy ra \(\Leftrightarrow2022-2022t=1+t\) \(\Leftrightarrow t=\dfrac{2021}{2023}\) \(\Leftrightarrow x=-\dfrac{2021}{2023}\)

Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{2021}{2023}\)

12 tháng 2 2024

Trường hợp \(x\) = - \(\dfrac{2020}{2021}\) thì sao em nhỉ?

 

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Gọi biểu thức đã cho là $P$. Đặt $\sqrt{xy}=a; \sqrt{yz}=b$ với $a,b>0$ thì ta cần chứng minh:

$P=\frac{a}{1+b}+\frac{1}{a+b}+\sqrt{\frac{2b}{a+1}}\geq 2$

Áp dụng BĐT AM-GM:

\(\frac{a+1}{2b}.1\leq \left(\frac{\frac{a+1}{2b}+1}{2}\right)^2=(\frac{a+1+2b}{4b})^2\)

\(\Rightarrow \sqrt{\frac{2b}{a+1}}\geq \frac{4b}{a+2b+1}(1)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a}{1+b}+\frac{1}{a+b}=\frac{a+b+1}{b+1}+\frac{a+b+1}{a+b}-2=(a+b+1)(\frac{1}{b+1}+\frac{1}{a+b})-2\geq \frac{4(a+b+1)}{a+2b+1}-2(2)\)

Từ \((1);(2)\Rightarrow P\geq \frac{4(a+2b+1)}{a+2b+1}-2=2\) (đpcm)

 

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:
Xét hiệu: 

$\frac{2022}{\sqrt{2023}}+\frac{2023}{\sqrt{2022}}-(\sqrt{2022}+\sqrt{2023})$

$=(\frac{2022}{\sqrt{2023}}-\sqrt{2023})+(\frac{2023}{\sqrt{2022}}-\sqrt{2022})$

$=\frac{2022-2023}{\sqrt{2023}}+\frac{2023-2022}{\sqrt{2022}}$

$=\frac{1}{\sqrt{2022}}-\frac{1}{\sqrt{2023}}>0$

$\Rightarrow \frac{2022}{\sqrt{2023}}+\frac{2023}{\sqrt{2022}}>\sqrt{2022}+\sqrt{2023}$

 

6 tháng 8 2018

Áp dụng BĐT AM-GM, Ta có

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\Rightarrow yz\sqrt{x-1}\le\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}\le\dfrac{xz\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\)

\(yx\sqrt{z-3}\le yx.\dfrac{3+z-3}{2\sqrt{3}}=\dfrac{xyz}{2\sqrt{3}}\)

\(\Rightarrow\dfrac{xy\sqrt{x-1}+xz\sqrt{y-2}+yz\sqrt{z-3}}{xyz}\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}=\dfrac{1}{2}+\dfrac{\sqrt{2}}{4}+\dfrac{\sqrt{3}}{6}\)

15 tháng 10 2017

ÁP dụng AM-GM:

\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)

Dấu = không xảy ra

13 tháng 8 2018

Ta có:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)

Áp dụng BĐT Cosi ta có:

\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\)

Cmtt:

\(\dfrac{y^3}{y\sqrt{1-y^2}}\ge2y^3\)

\(\dfrac{z^3}{z\sqrt{1-z^2}}\ge2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}+\dfrac{y^3}{y\sqrt{1-y^2}}+\dfrac{z^3}{z\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\) (ĐPCM)

NV
27 tháng 3 2021

Ta có:

\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Ta có:

\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\) 

Tương tự ...

Cộng lại ta có:

\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)

Do đó ta chỉ cần chứng minh:

\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)

13 tháng 3 2021

Áp dụng giả thiết \(ab=1\) và bất đẳng thức Cauchy ta có:

\(\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=a-b+\dfrac{2}{a-b}\ge2\sqrt{\dfrac{2\left(a-b\right)}{a-b}}=2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab=1\\a-b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

13 tháng 3 2021

mình ko hiểu cho lắmoho

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

Áp dụng BĐT Cô-si ta có:

$\frac{a^2+b^2}{a-b}=\frac{(a-b)^2+2ab}{a-b}=\frac{(a-b)^2+2}{a-b}=(a-b)+\frac{2}{a-b}\geq 2\sqrt{(a-b).\frac{2}{a-b}}=2\sqrt{2}$

Ta có đpcm.

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)