\(\dfrac{2021x+2023}{\sqrt{1-x^2}}\ge2\sqrt{2022}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2024

Đk: \(-1< x< 1\)

Ta có \(2\sqrt{2022\left(1-x^2\right)}\le2023-x^2\) 

Nếu \(0\le x< 1\) thì \(x\left(x+2021\right)\ge0\) 

\(\Leftrightarrow x^2+2021x\ge0\)

\(\Leftrightarrow2023-x^2\le2021x+2023\)

\(\Rightarrow\) \(2\sqrt{2022\left(1-x^2\right)}\le2023-x^2\le2021x+2023\)

\(\Leftrightarrow2\sqrt{2022}\le\dfrac{2021x+2023}{\sqrt{1-x^2}}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2022=1-x^2\\x=0\end{matrix}\right.\), vô lý.

Vậy nếu \(0\le x< 1\) thì BĐT đúng.

Xét \(-1< x< 0\) thì đặt \(x=-t\left(0< t< 1\right)\)

BĐT cần chứng minh \(\Leftrightarrow\dfrac{2023-2021t}{\sqrt{1-t^2}}\ge2\sqrt{2022}\)

Ta có \(2023-2021t\) 

\(=2022-2022t+1+t\)

\(=2022\left(1-t\right)+\left(1+t\right)\)

\(\ge2\sqrt{2022\left(1-t\right)\left(1+t\right)}\)

\(=2\sqrt{2022\left(1-t^2\right)}\)

\(\Leftrightarrow\dfrac{2023-2021t}{\sqrt{1-t^2}}\ge2\sqrt{2022}\)

Dấu "=" xảy ra \(\Leftrightarrow2022-2022t=1+t\) \(\Leftrightarrow t=\dfrac{2021}{2023}\) \(\Leftrightarrow x=-\dfrac{2021}{2023}\)

Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{2021}{2023}\)

12 tháng 2 2024

Trường hợp \(x\) = - \(\dfrac{2020}{2021}\) thì sao em nhỉ?

 

1 tháng 8 2017

a)Áp dụng BĐT AM-GM ta có:

\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)

\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)

Xảy ra khi \(x=y\)

b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)

Đúng với AM-GM 4 số

Xảy ra khi \(x=y=z=t\)

25 tháng 4 2018

a) Áp dụng BĐT Cauchy cho 2 số không âm , ta có:

\(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

b) Xét hiệu:

\(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)

=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

25 tháng 4 2018

a) a + b ≥ 2\(\sqrt{ab}\) ( a > 0 ; b > 0 )

⇔ a - 2\(\sqrt{ab}\) + b ≥ 0

\(\left(\sqrt{a}-\sqrt{b}\right)^2\) ≥ 0 ( luôn đúng )

b) Áp dụng BĐT Cô-si :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0)

⇒ a2 + b2 ≥ 2ab ( a > 0 ; b > 0)

\(\dfrac{a^2+b^2}{ab}\) ≥ 2

\(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ 2

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{1}{a}+\frac{1}{b}-\left(\frac{a}{b}+\frac{b}{a}-2\right)\geq 2\sqrt{2}\)

\(\Leftrightarrow \frac{a+b}{ab}-\frac{a^2+b^2}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{a+b-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{\sqrt{2ab+1}-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{2ab}{ab(\sqrt{2ab+1}+1}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{1}{\sqrt{2ab+1}+1}\geq \sqrt{2}-1\)

\(\Leftrightarrow \sqrt{2ab+1}+1\leq \sqrt{2}+1\)

\(\Leftrightarrow ab\leq \frac{1}{2}\leftrightarrow 2ab\leq 1\Leftrightarrow 2ab\leq a^2+b^2\) (luôn đúng theo AM-GM)

Do đó ta có đpcm.

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

BĐT cần chứng minh tương đương với:

\(\frac{1}{a}+\frac{1}{b}-\left(\frac{a}{b}+\frac{b}{a}-2\right)\geq 2\sqrt{2}\)

\(\Leftrightarrow \frac{a+b}{ab}-\frac{a^2+b^2}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{a+b-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{\sqrt{2ab+1}-1}{ab}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{2ab}{ab(\sqrt{2ab+1}+1}\geq 2\sqrt{2}-2\)

\(\Leftrightarrow \frac{1}{\sqrt{2ab+1}+1}\geq \sqrt{2}-1\)

\(\Leftrightarrow \sqrt{2ab+1}+1\leq \sqrt{2}+1\)

\(\Leftrightarrow ab\leq \frac{1}{2}\leftrightarrow 2ab\leq 1\Leftrightarrow 2ab\leq a^2+b^2\) (luôn đúng theo AM-GM)

Do đó ta có đpcm.

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

13 tháng 6 2019

2. 

Từ giả thiết, ta có : 

\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)

\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự, ta cũng có : 

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :

\(abcd\le\frac{1}{81}\left(đpcm\right)\)

13 tháng 6 2019

2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)

\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)

                  \(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)

Tương tự :

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)

Từ đó suy ra:

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)

\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)

Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)

3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)

Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được 

\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)

Từ (1) và (2) suy ra:

\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)

Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)

1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)

Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:

\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)

\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)

\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)

Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)

14 tháng 6 2017

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)