K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

NV
17 tháng 11 2019

Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)

Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:

Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến

Câu 2:

\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)

Tương tự, cộng lại và rút gọn sẽ có đpcm

17 tháng 11 2019

Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,

tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,

@Akai Haruma

giúp e vs ạ! thanks trước

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

https://www.google.com/search?q=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&rlz=1C1NHXL_viVN846VN846&oq=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&aqs=chrome..69i57.4867j0j7&sourceid=chrome&ie=UTF-8

29 tháng 4 2019

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

Dấu " = " xảy ra <=> a=b

Áp dụng : 

\(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)

Tương tự: \(\frac{1}{2b^3+c^3+a^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(b^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\right)\)

                 \(\frac{1}{2c^3+b^3+a^3+2}=\frac{1}{\left(c^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{c^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)

Cộng vế với vế của 3 BĐT trên ta có:

\(\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{4}.2.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)\(=\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)

Ta chứng minh BĐT phụ:

\(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy!

Có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2-ab\ge ab\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)\ge ab\left(a+b\right)\)( vì a,b>0 => a+b>0)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

                              đpcm

Dấu " = " xảy ra <=> a=b

Áp dụng: \(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)

Tương tự:\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(b+c\right)+abc}=\frac{1}{bc\left(a+b+c\right)}\) 

               \(\frac{1}{a^3+c^3+1}\le\frac{1}{ac\left(a+c\right)+abc}=\frac{1}{ac\left(a+b+c\right)}\)

Cộng vế với vế của 3 BĐT trên ta có:

\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le\)\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(a+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

\(\Rightarrow\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\le\frac{1}{2}.1=\frac{1}{2}\)

Dấu " = " xảy ra <=> a=b=c=1 

Tham khảo nhé~

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

7 tháng 10 2017

2/ GT <=> \(\left(a+b+c\right)abc\ge ab+bc+ca\)

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)abc}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

Sao hôm thứ 7 nghỉ

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??