2^x+2^x+1+2^x+2+...+2^x+100=2^101+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: S=1(1+1)+2(1+2)+...+100(1+100)
=1+2+...+100+1^2+2^2+...+100^2
\(=\dfrac{100\cdot102}{2}+\dfrac{100\cdot\left(100+1\right)\cdot\left(2\cdot100+1\right)}{6}\)
\(=100\cdot51+\dfrac{100\cdot101\cdot201}{6}\)
=343450
b: \(A=1\cdot2\cdot3+2\cdot3\cdot4+...+100\cdot101\cdot102\)
=>\(4\cdot A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+...+100\cdot101\cdot102\left(103-99\right)\)
=>4*A=100*101*102*103
=>A=25*101*102*103
Câu 2:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
do đó phương trình ban đầu tương đương với:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
Đặt A=\(2^{x+1}+2^{x+2}+...+2^{x+100}\)
=>\(2\cdot A=2^{x+2}+2^{x+3}+...+2^{x+101}\)
=>\(A=2^{x+101}-2^{x+1}\)
\(A=32\left(2^{101}-2\right)=2^{106}-2^6\)
=>\(2^{x+1}\left(2^{100}-1\right)=2^6\left(2^{100}-1\right)\)
=>x+1=6
=>x=5
Với x > 0
ta có
x + 1/101 + x + 2/101 + ... + x + 100/ 101 = 101x
=> 100x + ( 1 + 2 + 3 + ... + 100)/101 = 101x
=> 5050/101 = 101 x - 100x
=> x = 50
x < 0 ta có :
-x - 1/101 - x - 2/101 - ... - x - 100/101 = 101x
=> - 100x - ( 1 + 2 + .. + 100)/101 = 101x
=> 5050/101 = -100x - 101x
=> 50 = -201x
=> x =
thang Tran trả lời sai, x chỉ có thể lớn hơn 0 thôi, ta có : VT= |x+1/101|+|x+2/101|+|x+3/101|+...+|x+100/101| >= 0
Mà VT=VP =)) VP= 101x >= (lớn hơn hoặc bằng) 0 mà 101 >= 0 =)) x >= 0
<sau đó mới làm giống TH x>0 của bn í>
SAi vậy mà bn vẫn ak???
A = \(\dfrac{3^{100}.\left(-2\right)+3^{101}}{\left(-3\right)^{101}-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2\right)+3^{100}.3}{\left(-3\right)^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.\left(-2+3\right)}{3^{100}.\left(-3\right)-3^{100}}\)
A = \(\dfrac{3^{100}.1}{3^{100}.\left(-3-1\right)}\)
A = \(\dfrac{3^{100}}{3^{100}}\) . \(\dfrac{1}{-4}\)
A = - \(\dfrac{1}{4}\)
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+100}=2^{101}+1$
$2^x(1+2+2^2+2^3+...+2^{100})=2^{101}+1$ (1)
$2^x(2+2^2+2^3+2^4+...+2^{101})=2^{102}+2$ (nhân 2 vế cho 2) (2)
Lấy vế (2) trừ (1) theo vế:
$2^x(2^{101}-1)=2^{102}-2^{101}+1$
$\Rightarrow 2^x(2^{101}-1)=2^{101}(2-1)+1=2^{101}+1$
$2^x=\frac{2^{101}+1}{2^{101}-1}$
$x$ tìm được sẽ rất xấu. Có lẽ bạn viết sai đề. Bạn xem lại nhé.
Đề sai hay sao ý tính mãi mà ko có x phù hợp