Biết x thỏa mãn \(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\). Tính \(\dfrac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\)
=>\(x^2+x+1=4x\)
=>\(x^2-3x+1=0\)
\(F=\dfrac{x^5-3x^4+x^3+3x^4-9x^3+3x^2+5x^3-15x^2+5x+12x^2-36x+12+21x}{x^2\left(x^2-3x+1\right)+3x\left(x^2-3x+1\right)+15\left(x^2-3x+1\right)+27x}\)
\(=\dfrac{12x}{27x}=\dfrac{4}{9}\)
1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
\(\Leftrightarrow5x+20+12x-28=7x+2\)
\(\Leftrightarrow17x-7x=2+8=10\)
hay x=1
2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-6x+3x=3-4\)
hay \(x=\dfrac{1}{3}\)
3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
\(\Leftrightarrow4x-12-x-2=6x-3\)
\(\Leftrightarrow3x-14-6x+3=0\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
\(\Leftrightarrow3x-6-8x-12=x+6\)
\(\Leftrightarrow-5x-x=6+18\)
hay x=-4
5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
\(\Leftrightarrow6x-3+2x-6=-1\)
\(\Leftrightarrow8x=8\)
hay x=1
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)
ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )
\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn
2) Ta có: \(\dfrac{x+4}{5}-x+4=\dfrac{x}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6\left(x+4\right)}{30}-\dfrac{30\left(x-4\right)}{30}=\dfrac{10x}{30}-\dfrac{15\left(x-2\right)}{30}\)
\(\Leftrightarrow6x+24-30x+120=10x-15x+30\)
\(\Leftrightarrow-24x+144=-5x+30\)
\(\Leftrightarrow-24x+144+5x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
3) Ta có: \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(\Leftrightarrow\dfrac{3\left(10x+3\right)}{36}=\dfrac{36}{36}+\dfrac{4\left(6+8x\right)}{36}\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9-60-32x=0\)
\(\Leftrightarrow-2x-51=0\)
\(\Leftrightarrow-2x=51\)
hay \(x=-\dfrac{51}{2}\)
Vậy: \(x=-\dfrac{51}{2}\)
4) Ta có: \(\dfrac{x+1}{3}-\dfrac{x-2}{6}=\dfrac{2x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x+1\right)}{6}-\dfrac{x-2}{6}=\dfrac{3\left(2x-1\right)}{6}\)
\(\Leftrightarrow2x+2-x+2=6x-3\)
\(\Leftrightarrow x+4-6x+3=0\)
\(\Leftrightarrow-5x+7=0\)
\(\Leftrightarrow-5x=-7\)
hay \(x=\dfrac{7}{5}\)
Vậy: \(x=\dfrac{7}{5}\)
1) \(\dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\(2\left(5x-2\right)=3\left(5-3x\right)\)
\(10x-4=15-9x\)
\(10x+9x=15+4\)
\(19x=19\)
\(x=1\)
Vậy \(x=1\)
1/ ĐKXĐ : \(x\ne1\)
\(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow19x=7\Leftrightarrow x=\dfrac{7}{19}\left(tm\right)\)
Vậy...
b/ \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\) ĐKXĐ : \(x\ne-1\)
\(\Leftrightarrow12-28x=1+x\)
\(\Leftrightarrow11=29x\Leftrightarrow x=\dfrac{11}{29}\) \(\left(tm\right)\)
Vậy....
c/ ĐKXĐ : \(x\ne0\)
\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2x^2-12=2x^2+3x\)
\(\Leftrightarrow3x=-12\Leftrightarrow x=-4\) \(\left(tm\right)\)
Vậy...
4/ ĐKXĐ : \(x\ne-\dfrac{2}{3}\)
\(\dfrac{5}{3x+2}=2x-1\)
\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)
\(\Leftrightarrow6x^2+4x-3x-2=5\)
\(\Leftrightarrow6x^2+x-7=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=1\end{matrix}\right.\)
Vậy....
5,6 Tương tự nhé !
1)ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-9-2x+2=0\)
\(\Leftrightarrow19x-7=0\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\dfrac{7}{19}\)(nhận)
Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)
2) ĐKXĐ: \(x\ne-1\)
Ta có: \(\dfrac{2\left(3-7x\right)}{1+x}=\dfrac{1}{2}\)
\(\Leftrightarrow4\left(3-7x\right)=x+1\)
\(\Leftrightarrow12-28x-x-1=0\)
\(\Leftrightarrow-29x+11=0\)
\(\Leftrightarrow-29x=-11\)
\(\Leftrightarrow x=\dfrac{11}{29}\)
Vậy: \(S=\left\{\dfrac{11}{29}\right\}\)
3) ĐKXĐ: \(x\ne0\)
Ta có: \(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{x^2-6}{x}=\dfrac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-12=2x^2+6x\)
\(\Leftrightarrow2x^2-12-2x^2-6x=0\)
\(\Leftrightarrow-6x-12=0\)
\(\Leftrightarrow-6x=12\)
\(\Leftrightarrow x=-2\)
Vậy: S={-2}
1
\(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)
=> \(-3x^2+15x+5x-5+3x^2=4-x\)
=> \(20x-5=4-x\)
=> \(21x=9\)
=> \(x=\dfrac{3}{7}\)
Vậy x = \(\dfrac{3}{7}\)
2,
\(7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)
=> \(7x^2-14x-5x+5=7x^2+3\)
=> \(-14x-5x+5=3\)
=> \(-19x=-2\)
=> \(x=\dfrac{2}{19}\)
Vậy \(x=\dfrac{2}{19}\)
3,
\(3\left(5x-1\right)-x\left(x-2\right)+x^2-13x=7\)
=> \(15x-3-x^2+2x+x^2-13x=7\)
=> \(4x-3=7\)
=> 4x = 10
=> x = \(\dfrac{5}{2}\)
Vậy x = \(\dfrac{5}{2}\)
4,
\(\dfrac{1}{5}x\left(10x-15\right)-2x\left(x-5\right)=12\)
=> \(2x^2-3x-2x^2+10x=12\)
=> 7x = 12
=> x = \(\dfrac{12}{7}\)
Vậy x = \(\dfrac{12}{7}\)
a) ĐKXĐ: \(x\notin\left\{-1;-2;2\right\}\)
Ta có: \(\dfrac{1}{x^2+3x+2}-\dfrac{3}{x^2-x-2}=\dfrac{-1}{x^2-4}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}-\dfrac{3}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x+2\right)\left(x-2\right)}-\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-1\left(x+1\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x-2-3x-6=-x-1\)
\(\Leftrightarrow-2x-8+x+1=0\)
\(\Leftrightarrow-x-7=0\)
\(\Leftrightarrow-x=7\)
hay x=-7(thỏa ĐK)
Vậy: S={-7}
a) ĐKXĐ: x∉{−1;−2;2}x∉{−1;−2;2}
Ta có: 1x2+3x+2−3x2−x−2=−1x2−41x2+3x+2−3x2−x−2=−1x2−4
⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)
⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)
Suy ra: x−2−3x−6=−x−1x−2−3x−6=−x−1
⇔−2x−8+x+1=0⇔−2x−8+x+1=0
⇔−x−7=0⇔−x−7=0
⇔−x=7⇔−x=7
hay x=-7(thỏa ĐK)
Vậy: S={-7}
Đọc tiếp
a) ĐKXĐ: x∉{−1;−2;2}x∉{−1;−2;2}
Ta có: 1x2+3x+2−3x2−x−2=−1x2−41x2+3x+2−3x2−x−2=−1x2−4
⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)
⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)
Suy ra: x−2−3x−6=−x−1x−2−3x−6=−x−1
⇔−2x−8+x+1=0⇔−2x−8+x+1=0
⇔−x−7=0⇔−x−7=0
⇔−x=7⇔−x=7
hay x=-7(thỏa ĐK)
Vậy: S={-7}
Đọc tiếp
\(\dfrac{x}{x^2+x+1}=\dfrac{1}{4}\)
=>\(x^2+x+1=4x\)
=>\(x^2-3x+1=0\)
\(\dfrac{x^5-3x^3-10x+12}{x^4+7x^2+15}\)
\(=\dfrac{x^5-3x^4+x^3+3x^4-9x^3+3x^2+5x^3-15x^2+5x+12x^2-36x+12+21x}{x^4+7x^2+15}\)
\(=\dfrac{x^3\left(x^2-3x+1\right)+3x^2\left(x^2-3x+1\right)+5x\left(x^2-3x+1\right)+12\left(x^2-3x+1\right)+21x}{x^4+7x^2+15}\)
\(=\dfrac{21x}{x^4-3x^3+x^2+3x^3-9x^2+3x+15x^2-45x+15+42x}\)
\(=\dfrac{21x}{x^2\left(x^2-3x+1\right)+3x\left(x^2-3x+1\right)+15\left(x^2-3x+1\right)+42x}\)
\(=\dfrac{21x}{42x}=\dfrac{1}{2}\)