K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

thay X=-1, Y=3 giải phương trình ta được m=3

 

20 tháng 1 2022

\(m_1=\dfrac{11}{2}\)

\(m_2=3\)

Thay m=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+3y=3\\3x+4y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+9y=9\\3x+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y=3\\x+3y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{3}{5}\\x=3-3y=3-\dfrac{9}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)(1)

Khi \(m\notin\left\{2;-2\right\}\) thì hệ phương trình tương đương với:

\(\left\{{}\begin{matrix}x=3-my\\mx+4y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=3-my\\m\cdot\left(3-my\right)+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-my\\3m-m^2\cdot y+4y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3m-y\left(m^2-4\right)=6\\x=3-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(m^2-4\right)=3m-6\\x=3-my\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\\x=3-\dfrac{3m}{m+2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\x=\dfrac{3m+6-3m}{m+2}=\dfrac{6}{m+2}\end{matrix}\right.\)

Để x>1 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m+2>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4-m}{m+2}>0\\m>-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{m-4}{m+2}< 0\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 4\)

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}-2< m< 4\\m\ne2\end{matrix}\right.\)

NV
19 tháng 1 2024

\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2x+4my=9m\\4x+4my=32\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=9m-32\\mx+4y=9\end{matrix}\right.\) 

Hệ có nghiệm duy nhất khi \(m^2-4\ne0\Rightarrow m\ne\pm2\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{9m-32}{m^2-4}\\y=\dfrac{9-mx}{4}=\dfrac{8m-9}{m^2-4}\end{matrix}\right.\)

\(x=3y\Rightarrow\dfrac{9m-32}{m^2-4}=\dfrac{3\left(8m-9\right)}{m^2-4}\)

\(\Rightarrow9m-32=3\left(8m-9\right)\)

\(\Rightarrow m=-\dfrac{1}{3}\)

Ta có: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2y-4y=3m-6\\mx+4y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2-4\right)=3m-6\\mx+4y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-6}{m^2-4}\\mx=6-4y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3\left(m-2\right)}{\left(m+2\right)\left(m-2\right)}=\dfrac{3}{m+2}\\mx=6-4\cdot\dfrac{3}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=6-\dfrac{12}{m+2}=\dfrac{6\left(m+2\right)-12}{m+2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{m+2}\\mx=\dfrac{6m+12-12}{m+2}=\dfrac{6m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6m}{m+2}:m=\dfrac{6m}{m+2}\cdot\dfrac{1}{m}=\dfrac{6}{m+2}\\y=\dfrac{3}{m+2}\end{matrix}\right.\)

Để phương trình có nghiệm x>1 và y>0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>1\\\dfrac{3}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-1>0\\m+2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{m+2}-\dfrac{m+2}{m+2}>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6-m-2}{m+2}>0\\m>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m>-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>-4\\m>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m>-2\end{matrix}\right.\Leftrightarrow-2< m< 4\)

Vậy: Để hệ phương trình có nghiệm x>1 và y>0 thì -2<m<4

a: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{1}{m}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}=\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{1}{m}=\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\3m^2-m=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\3m^2-2m-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\\left(m-1\right)\left(3m+1\right)=0\end{matrix}\right.\)

=>m=1

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{1}{m}\ne\dfrac{3m-1}{m+1}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{1}{m}\\\dfrac{m}{1}\ne\dfrac{3m-1}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=1\\m^2+m\ne3m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in\left\{1;-1\right\}\\m^2-2m+1\ne0\end{matrix}\right.\)

=>m=-1

b: Để hệ có vô số nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}=\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{4}{m}=\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\10m-m^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m^2-10m+16=0\end{matrix}\right.\)

=>m=2

Để hệ vô nghiệm thì \(\dfrac{m}{1}=\dfrac{4}{m}\ne\dfrac{10-m}{4}\)

=>\(\left\{{}\begin{matrix}\dfrac{m}{1}=\dfrac{4}{m}\\\dfrac{m}{1}\ne\dfrac{10-m}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m^2=4\\4m\ne10-m\end{matrix}\right.\Leftrightarrow m=-2\)

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{1}\ne\dfrac{4}{m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

28 tháng 12 2022

a) Với \(m=0\) ta có:

\(\left\{{}\begin{matrix}0x+4y=10-0\\x+0y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{5}{2}\end{matrix}\right.\) (nhận trường hợp này).

Với \(m\ne0\), ta có:

\(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=10-m\\-mx-m^2y=-4m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(4-m^2\right)y=10-5m\left(1\right)\\x+my=4\left(2\right)\end{matrix}\right.\)

Biện luận:

Với \(m=2\) \(\left(1\right)\Rightarrow0y=0\) (phương trình vô số nghiệm),

Với \(m=-2\Rightarrow0y=20\) (phương trình vô nghiệm).

Với \(m\ne\pm2\Rightarrow y=\dfrac{10-5m}{4-m^2}=\dfrac{5\left(2-m\right)}{\left(2-m\right)\left(2+m\right)}=\dfrac{5}{m+2}\)

Vì \(y>0\Rightarrow\dfrac{5}{m+2}>0\Leftrightarrow m+2>0\Leftrightarrow m>-2\)

Thay \(y=\dfrac{5}{m+2}\) vào (2) ta được:

\(x+\dfrac{5m}{m+2}=4\Leftrightarrow x=\dfrac{8-m}{m+2}\)

Vì x>0 \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-m>0\\m+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-m< 0\\m+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow-2< m< 8\)

Vì m là số nguyên và \(m\ne2\) nên \(m\in\left\{-1;0;1;3;4;5;6;7\right\}\)

Vậy \(m\in\left\{1;0;1;3;4;5;6;7\right\}\) thì hệ đã cho có nghiệm duy nhất sao cho \(x>0,y>0\).

 

 

28 tháng 12 2022

b) Với \(m=0\) ta có nghiệm \(\left(x;y\right)=\left(4;\dfrac{5}{2}\right)\) (loại).

Với \(m=2\). Ta có hệ vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-\dfrac{x}{2}\end{matrix}\right.\)

Vì y là số nguyên dương nên:

\(\left\{{}\begin{matrix}x⋮2\\2-\dfrac{x}{2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮2\\x< 4\end{matrix}\right.\). Mặt khác x>0.

\(\Rightarrow x=2\Rightarrow y=1\)
Với \(m\ne\pm2\). Ta có \(y=\dfrac{5}{m+2}\).

Vì x,y là các số nguyên dương nên x,y>0. Nên:

\(m\in\left\{-1;0;1;3;4;5;6;7\right\}\) (1')

Mặt khác: \(5⋮\left(m+2\right)\)

\(\Rightarrow m+2\inƯ\left(5\right)\)

\(\Rightarrow m+2\in\left\{1;-1;5;-5\right\}\)

\(\Rightarrow m\in\left\{-1;-3;3;-7\right\}\) (2')

Từ (1') ,(2') \(\Rightarrow m\in\left\{-1;3\right\}\)

Vậy \(m\in\left\{-1;2;3\right\}\) thì hệ có nghiệm \(\left(x;y\right)\) với x,y là số nguyên dương.

 

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1