Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.
1.
\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)
vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)
Thay vào đẳng thức ta được:
\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
Ta có : \(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}m\left(8-my\right)+4y=9\\x=8-my\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}8m-m^2y+4y=9\\x=8-my\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y\left(4-m^2\right)=9-8m\\x=8-my\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}y=\frac{9-8m}{4-m^2}\\x=8-\frac{m\left(9-8m\right)}{4-m^2}\end{matrix}\right.\)
- Ta có : \(2x+y+\frac{38}{m^2-4}=0\)
- Thay \(x=8-\frac{m\left(9-8m\right)}{4-m^2},y=\frac{9-8m}{4-m^2}\) vào phương trình trên ta được :
\(2\left(8-\frac{m\left(9-8m\right)}{4-m^2}\right)+\frac{9-8m}{4-m^2}+\frac{38}{m^2-4}=3\)
=> \(16-\frac{2m\left(9-8m\right)}{4-m^2}+\frac{9-8m}{4-m^2}-\frac{38}{4-m^2}=3\)
=> \(\frac{2m\left(9-8m\right)}{4-m^2}-\frac{9-8m}{4-m^2}+\frac{38}{4-m^2}=13\)
=> \(\frac{18m-16m^2-9+8m+38}{4-m^2}=13\)
=> \(26m-16m^2+29=13\left(4-m^2\right)\)
=> \(26m-16m^2+29-52+13m^2=0\)
=> \(3m^2-26m+23=0\)
=> \(\left(3m-23\right)\left(m-1\right)=0\)
=> \(\left[{}\begin{matrix}3m-23=0\\m-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}m=\frac{23}{3}\\m=1\end{matrix}\right.\)
Vậy m = 23/3, m = 1 thỏa mãn điều kiện trên .
mk sẽ hướng dẩn nha.
phần a của 2 câu : tương tự nhé https://hoc24.vn/hoi-dap/question/621828.html
1b) thế \(x=-1;y=3\) --> m
1c) rút x và y theo m rồi thế vào giải
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\9m-m^2y-3y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\y=\dfrac{9m-4}{m^2+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=9+\dfrac{4m+27}{m^2+3}\\y=\dfrac{9m-4}{m^2+3}\end{matrix}\right.\) --> ...
2b) tương tự rút x và y theo m và biện luận
\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{my-9}{3}\\m^2y-9m+6y=48\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{my-9}{3}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\dfrac{9m^2+48m}{m^2+6}-9}{3}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-18m}{m^2+6}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\) --> ...
3c) từ \(x+y=7\Rightarrow y=7-x\) thế vào hệ ta được hệ pt 2 ẩn --> m
Tìm m để có nghiệm duy nhất \\(\\left\\{{}\\begin{matrix}x+my=3\\\\mx+4y=6\\end{matrix}\\right.\\)
\n\(\left\{{}\begin{matrix}x+my=3\\mx-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-my\\m\left(3-my\right)-3y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m-m^2y-3y=1\\x=3-my\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(m^2+3\right)=3m-1\\x=3-my\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3m-1}{m^2+3}\\x=3-\frac{m\left(3m-1\right)}{m^2+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+9}{m^2+3}\\y=\frac{3m-1}{m^2+3}\end{matrix}\right.\)
Khi đó: \(x+y=\frac{m+9+3m-1}{m^2+3}=1\)
\(\Leftrightarrow4m+8=m^2+3\)
\(\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-1\end{matrix}\right.\)( thỏa mãn )
Vậy....
\(\left\{{}\begin{matrix}mx+4y=9\\x+my=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2x+4my=9m\\4x+4my=32\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=9m-32\\mx+4y=9\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-4\ne0\Rightarrow m\ne\pm2\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{9m-32}{m^2-4}\\y=\dfrac{9-mx}{4}=\dfrac{8m-9}{m^2-4}\end{matrix}\right.\)
\(x=3y\Rightarrow\dfrac{9m-32}{m^2-4}=\dfrac{3\left(8m-9\right)}{m^2-4}\)
\(\Rightarrow9m-32=3\left(8m-9\right)\)
\(\Rightarrow m=-\dfrac{1}{3}\)