Chứng minh rằng:
a. A= 100000...9( 100 chữ số) là hợp số
b, B= 1000000009 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. $4\equiv 1\pmod 3$
$\Rightarrow 4^{20}\equiv 1\pmod 3$
$\Rightarrow 4^{20}-1\equiv 0\pmod 3$
Hay $4^{20}-1\vdots 3$. Mà $4^{20}-1>3$ nên nó là hợp số (đpcm)
b.
$1000001=10^6+1=(10^2)^3+1=(10^2+1)(10^4-10^2+1)$ là hợp số (đpcm)
a) Ta có: a+2
mà a=100
Suy ra: =100+2=102
mà 102=2x3x17
Nếu là hợp số thì có thể phân tích ra thừa số nguyên tố
Vì thế a+2 là hợp số
b) Sai đề rùi bạn ơi. Chứng minh a+3 là số nguyên tố cơ
a) \(A=\left\{101;103;...;999\right\}\)
Số lượng phần tử:
\(\left(999-101\right):2+1=450\) (phần tử)
b) \(B=\left\{2;5;8;...;302\right\}\)
Số lượng phần tử:
\(\left(302-2\right):3+1=101\) (phần tử)
c) \(C=\left\{7;11;15;19;...;279\right\}\)
Số lượng phần tử:
\(\left(279-7\right):4+1=69\) (phần tử)
a=11...1:2n số 1 nên a=(10^2n - 1)/9
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9
c=66...6:n số 6 nên c=6*(10^n -1)/9
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9
=[ (10^n)^2 + 2*10^n(5+3) +64]/9
=[ (10^n)^2 + 2*8*10^n + 8^2]/9
= (10^n + 8 )^2/9
= [(10^n + 8 )/3]^2
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương
a=1.....1(2n số 1)=1....1(n số 1).10n +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) ⇒ 10n =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương
\(89999......9999=900....000-1=9.10^{2004}-1=\left(3.10^{1002}\right)^2-1\)
\(=\left(3.10^{1002}-1\right)\left(3.10^{1002}+1\right)\) là hợp số