Xét biểu thức đại số với hai biến k và m sau:
\(P = \left( {2k - 3} \right)\left( {3m - 2} \right) - \left( {3k - 2} \right)\left( {2m - 3} \right)\)
a) Rút gọn biểu thức P.
b) Chứng minh rằng tại mọi giá trị nguyên của k và m, giá trị của biểu thức P luôn là một số nguyên chia hết cho 5.
a)
\(\begin{array}{l}P = \left( {2k - 3} \right)\left( {3m - 2} \right) - \left( {3k - 2} \right)\left( {2m - 3} \right)\\ = 2k.3m - 2k.2 - 3.3m + 3.2 - \left( {3k.2m - 3k.3 - 2.2m + 2.3} \right)\\ = 6km - 4k - 9m + 6 - 6km + 9k + 4m - 6\\ = \left( {6km - 6km} \right) + \left( { - 4k + 9k} \right) + \left( { - 9m + 4m} \right) + \left( {6 - 6} \right)\\ = 5k - 5m\end{array}\)
b)
Ta có: \(P = 5k - 5m = 5.\left( {k - m} \right)\)
Vì \(5 \vdots 5\) và k, m nguyên nên P chia hết cho 5.