Tìm m để GTNN của hàm số \(y=\dfrac{m.cosx+\left(2m-1\right).sinx+3-m}{cosx+sinx-2}\) không quá 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$
$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$
Vì: $0\leq \sin ^22x\leq 1$
$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$
Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$
3.
$0\leq |\sin x|\leq 1$
$\Rightarrow 3\geq 3-2|\sin x|\geq 1$
Vậy $y_{\min}=1; y_{\max}=3$
\(\Leftrightarrow\left(2m-1\right)sinx-\left(m+2\right)cosx+4m-3\ge0\) ;\(\forall x\)
\(\Leftrightarrow m\ge\dfrac{sinx+2cosx+3}{2sinx-cosx+4}=P\)
\(\Leftrightarrow m\ge P_{max}\)
Ta có: \(P=\dfrac{sinx+2cosx+3}{2sinx-cosx+4}\Leftrightarrow\left(2P-1\right)sinx-\left(P+2\right)cosx=3-4P\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(2P-1\right)^2+\left(P+2\right)^2\ge\left(3-4P\right)^2\)
\(\Leftrightarrow11P^2-24P+4\le0\)
\(\Rightarrow\dfrac{2}{11}\le P\le2\)
\(\Rightarrow m\ge2\)
C1: \(a.sinx+b.cosx=c\)
Pt vô nghiệm \(\Leftrightarrow a^2+b^2< c^2\)
Bạn áp dụng công thức trên sẽ tìm ra m
C2: (Bạn vẽ đường tròn lượng giác sẽ tìm được)
Hàm số \(y=sinx\) đồng biến trên khoảng \(\left(-\dfrac{\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\right)\) ( góc phần tư thứ IV và I)
Hàm nghịch biến trên khoảng \(\left(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\right)\)( góc phần tư thứ II và III)
Ý A, khoảng nằm trong góc phần tư thứ III và thứ IV => Hàm nghịch biến sau đó đồng biến
Ý B, khoảng nằm trong góc phần tư thứ I và thứ II => hàm đồng biến sau đó nghịch biến
Ý C, khoảng nằm trong góc phần tư thứ IV; I ; II => hàm đồng biền sau đó nghịch biến
Ý D, khoảng nằm trong phần tư thứ IV ; I=> hàm đồng biến
Đ/A: Ý D
(Toi nghĩ thế)
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)
y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)
y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)
y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t = tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\
Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)
⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ
Đáp án D
Hàm số xác định với mọi x
⇔ 2sin2x + 4sinx cosx – (3 + 2m)cos2x + 2 ≤ 0 ∀x ∈ R (1)
cos x = 0 => (1) đúng
cos x ≠ 0 khi đó ta có: (1) ⇔ 2tan2x + 4tanx – (3 + 2m) + 2(1 + tan2x) ≥ 0
⇔ 4tan2x + 4tanx ≥ 1 + 2m ∀x ∈ R
⇔ (2tanx + 1)2 ≥ 2 + 2m ∀x ∈ R ⇔ 2 + 2m ≤ 0 ⇔ m ≤ -1
\(\Leftrightarrow m.cosx+\left(2m-1\right)sinx+3-m=y\left(cosx+sinx-2\right)\)
\(\Leftrightarrow\left(m-y\right)cosx+\left(2m-y-1\right)sinx=m-2y-3\)
Pt có nghiệm khi:
\(\left(m-y\right)^2+\left(2m-y-1\right)^2\ge\left(m-2y-3\right)^2\)
\(\Leftrightarrow2y^2+\left(2m+10\right)y-4m^2-2m+8\le0\)
\(\Rightarrow\dfrac{-m-5-\sqrt{9m^2+14m+9}}{2}\le y\le\dfrac{-m-5+\sqrt{9m^2+14m+9}}{2}\)
\(\Rightarrow y_{min}=\dfrac{-m-5-\sqrt{9m^2+14m+9}}{2}\le3\)
\(\Rightarrow\sqrt{9m^2+14m+9}\ge-m-11\)
BPT này đúng với mọi m. Vậy bài toán thỏa mãn với mọi m
Em cảm ơn anh ạ!