(2x + 4) mũ 2024 + I 3y - 9 I mũ 2023 = 0. tìm x và y. nhanh nhé .mk đang cần gấp😊😊
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. | x + 1| + (y + 2)2 = 0
Mà (y + 2)2 \(\ge\) 0
Đẳng thức khi . y + 2 \(\ge\) 0
y \(\ge\) - 2
. x + 1 = 0
. x = -1
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=\dfrac{86}{2}\\ x=43\)
\(105-\left[\left(2x+7\right)-13\right]=\left(-15\right)^{10}:\left(9^5.5^8\right)\\ 105-\left[\left(2x+7\right)-13\right]=15^{10}:3^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=5^{10}:5^8\\ 105-\left[\left(2x+7\right)-13\right]=25\\ \left(2x+7\right)-13=105-25\\ \left(2x+7\right)-13=80\\ 2x+7=80+13\\ 2x+7=93\\ 2x=93-7\\ 2x=86\\ x=86:2\\ x=43\)
Bài 1:
a) Ta có: \(2x=5y.\)
=> \(\frac{x}{y}=\frac{5}{2}\)
=> \(\frac{x}{5}=\frac{y}{2}\) và \(x.y=90.\)
Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
Có: \(x.y=90\)
=> \(5k.2k=90\)
=> \(10k^2=90\)
=> \(k^2=90:10\)
=> \(k^2=9\)
=> \(k=\pm3.\)
TH1: \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)
TH2: \(k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)
e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)
=> \(\frac{x}{4}=\frac{y}{5}\) và \(x.y=20.\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
Có: \(x.y=20\)
=> \(4k.5k=20\)
=> \(20k^2=20\)
=> \(k^2=20:20\)
=> \(k^2=1\)
=> \(k=\pm1.\)
TH1: \(k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)
TH2: \(k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)
Chúc bạn học tốt!
Các bạn ơi mình thiếu ở chỗ là
4x5y chia cho 2 ; 5 và 9 đều dư 1
Nha các bạn
\(\left(2x+4\right)^{2024}+\left(\left|3y-9\right|\right)^{2023}=0\) (*)
Ta có: \(\left(2x+4\right)^{2024}\ge0\forall x\) (vì có số mũ chẵn) (1)
\(\left(\left|3y-9\right|\right)^{2023}\ge0\forall y\) (vì giá trị tuyệt đối luôn ≥0) (2)
Từ (1) và (2) ta có:
\(\Rightarrow\left\{{}\begin{matrix}2x+4=0\\3y-9=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
Vậy: ...
tại sao 3y-9=0 mà y lại = 3