Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta thấy \(\begin{cases}\left(2x-5\right)^{2000}\\\left(3y+4\right)^{2002}\end{cases}\ge0}\)
Theo bài ra ta có (2x-5)2000+(3y+4)2002\(\le\) 0
=> (2x-5)2000+(3y+4)2002=0
=>2x-5=0 => x=2,5
=>3y+4=0=>y=\(\frac{-4}{3}\)
Vì (2x-5)2000 > 0 với mọi x
(3y+4)2002 > 0 với mọi y
=>(2x-5)2000+(3y+4)2002 > 0 ới mọi x;y
Mà (2x-5)2000+(3y+4)2002 < 0 (theo đề)
=>(2x-5)2000+(3y+4)2002=0
=>(2x-5)2000=(3y+4)2002=0
+)(2x-5)2000=0=>2x-5=0=>x=5/2
+)(3y+4)2002=0=>3y+4=0=>y=-4/3
Vậy x=5/2;y=-4/3
a) (2x-3)15 = (2x-3)7
=> (2x-3)15 - (2x-3)7 = 0
(2x-3)7.[(2x-3)8 -1] = 0
=> (2x-3)7 = 0 => 2x-3 = 0 => 2x = 3 => x = 3/2
(2x-3)8 - 1 = 0 => (2x-3)8 = 1 => 2x - 3 = 1 => 2x = 4 => x = 2
=> 2x - 3 = - 1 => 2x = 2 => x = 1
KL:...
b) ta có: \(\left(x-3\right)^{16}\ge0;\left(3y-5\right)^4\ge0.\)
Để (x-3)16 + (3y-5)4 = 0
=> (x-3)16 = 0 => x-3 = 0 => x = 3
(3y-5)4 = 0 => 3y - 5 = 0 => 3y = 5 => y = 5/3
KL:...
\(2)\) Ta có :
\(n^{200}< 3^{400}\)
\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)
\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)
\(\Leftrightarrow\)\(n^{200}< 9^{200}\)
Mà \(n\) lớn nhất nên \(n=8\)
Vậy \(n=8\)
Chúc bạn học tốt ~
bn tham khao nha
https://olm.vn/hoi-dap/detail/6372485534.html
Ta có: \(\left(2x-5\right)^2\ge0\forall x\) ; \(\left(3y+4\right)^{2014}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x;y\)
Để thỏa mạn đề bài :
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2012}=0\\\left(3y+4\right)^{2014}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}}\)
Vậy............
a, 2017-|x-2017| = x
=> |x - 2017| = 2017 - x
Th1: x \(\ge\)2017
=> x - 2017 = 2017 - x
=> x + x = 2017 + 2017
=> x = 2017 (thỏa mãn)
Th2: x < 2017
=> x - 2017 = -2017 + x
=> x - x = -2017 + 2017
=> 0 = 0
Vậy x = 2017
b, Vì \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\\\left(3y-7\right)^{2020}\ge0\\\left|x+y+z\right|\ge0\end{cases}\forall x,y,z}\)
\(\Rightarrow\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|=0\)
Do đó \(\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y-7\right)^{2020}=0\\\left|x+y+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y-7=0\\x+y+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{3}\\z=\frac{-29}{6}\end{cases}}}\)
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\) (1)
có : \(\left(2x-5\right)^{2000}\ge0\forall x\)
\(\left(3y+4\right)^{2002}\ge0\forall x\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Em xem lại số mũ của 2x - 5y nhé
2023 hay 2024?