K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2024

a)

\(3x\left(x^2+6x+2\right)\)

\(=3x.x^2+3x.6x+3x.2\)

\(=3x^3+18x^2+6x\)

b)

\(\left(x-3\right)\left(x^2+6x+8\right)\)

\(=x\left(x^2+6x+8\right)-3\left(x^2+6x+8\right)\)

\(=x^3+6x^2+8x-3x^2-18x-24\)

\(=x^3+3x^2-10x-24\)

14 tháng 5 2022

`a)[3x+2]/[x^2]:[6x+4]/[2x^2]`       

`=[3x+2]/[x^2].[2x^2]/[2(3x+2)]`

`=1`

____________________________________________________

`b)[4xy]/[x+y]:[6x^2y^3]/[x^2-y]`         

`=[4xy]/[x+y].[(x-y)(x+y)]/[6xy.xy^2]`

`=[2(x-y)]/[3xy^2]=[2x-2y]/[3xy^2]`

19 tháng 1 2022

a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)

=x2-2x+1-8x+4x2-6+3x=5x2-7x-6

b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y

c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)

25 tháng 10 2023

Bài 1: 

a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)

\(x^2\) -  16 - 5\(x\) - 5 + \(x^2\) + \(x\) 

= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)

= 2\(x^2\) - 4\(x\) - 21

25 tháng 10 2023

b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)

=  3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7

= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)

= - 3\(x^2\) + 3\(xy\) - 3

20 tháng 12 2019

Bài 1:

a)

 \(9x^2-49=0\)

\(9x^2-49+49=0+49.\)

\(9x^2=49\)

\(\frac{9x^2}{9}=\frac{49}{9}\)

\(x^2=\frac{49}{9}\)

\(x=\sqrt{\frac{49}{9}}\)

\(x=\frac{\sqrt{49}}{\sqrt{9}}\)

\(x=\frac{7}{3}\)hay \(x=2,33333...\)

b)

\(\left(x-1\right)\left(x+2\right)-x-2=0.\)

\(x^2+x-2-x-2.\)

\(x^2+\left(x-x\right)-\left(2+2\right)=\)\(0\)

\(x^2-4=0\)

\(x=\sqrt{4}\)

\(x=2\)

Bài 2:

a)

      \(\frac{x}{x}-3+9-\frac{6x}{x^2}-3x.\)

\(=1-3+9-\frac{6x}{x^2}-3x.\)

\(=1-3+9-\frac{6}{x}-3x.\)

\(=7-\frac{6}{x}-3x\)

b)

       \(6x-\frac{3}{x}\div4x^2-\frac{1}{3x^2}\)

\(=6x-\frac{3}{x}\div\frac{4}{1}x^2-\frac{1}{3x^2}.\)

\(=6x-\frac{3}{x}\times\frac{1}{4}x^2-\frac{1}{3x^2}\)

\(=6x-\frac{3x^2}{x4}-\frac{1}{3x^2}\)

\(=6x-\frac{3x}{4}-\frac{1}{3x^2}\)

\(=\frac{6x}{1}-\frac{3x}{4}-\frac{1}{3x^2}\)

\(=\frac{72x^3-36x^3-12x^2}{12x^2}\)

\(=\frac{36-12x^2}{12x^2}\)

13 tháng 12 2018

\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)

\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)

\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)

\(=\frac{1}{2\left(x-3\right)}\)

\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)

\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)

\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)

\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)

\(=\frac{12}{x}\)

27 tháng 10 2019

a) 3x2 .(2x2 - 3yz + x3)= 6x4 - 6x2yz +3x5

b)(24x5 - 12x4 + 6x2 ).6x2 = 144x7 - 72x6 +36x4

a) 3x2 . (2x2 - 3yz + x3)

= 3x2 . 2x2 + 3x2 . (- 3yz) + 3x2 . x3

= 6x4 + (-9x2yz) + 3x5

= 6x4 - 9x2yz + 3x5

Cái này trong SGK hướng dẫn giải chi tiết lắm mà

\(=\dfrac{x^3-2x^2-x^2+2x+4x-8}{x-2}=x^2-x+4\)

29 tháng 12 2022

a) 3x.(x² - 2)

= 3x.x² + 3x.(-2)

= 3x³ - 6x

b) (6x³ + 2x² - 4x) : 2x

= 6x³ : 2x + 2x² : 2x - 4x : 2x

= 3x² + x - 2

c) 2x(x² - 1)

= 2x.x² - 2x.1

= 2x³ - 2x

a) Ta có: \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\left(\dfrac{1}{x\left(x+1\right)}+\dfrac{x+2}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\dfrac{x^2+2x+1}{x\left(x+1\right)}:\dfrac{x^2-2x+1}{x}\)

\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x+1}{\left(x-1\right)^2}\)

b) Ta có: \(\left(\dfrac{3x}{1-3x}+\dfrac{2x}{3x+1}\right):\dfrac{6x^2+10x}{1-6x+9x^2}\)

\(=\dfrac{3x\left(3x+1\right)+2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{9x^2+3x+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}:\dfrac{2x\left(3x+5\right)}{\left(1-3x\right)^2}\)

\(=\dfrac{3x^2+5x}{\left(1-3x\right)\left(1+3x\right)}\cdot\dfrac{\left(1-3x\right)^2}{2x\left(3x+5\right)}\)

\(=\dfrac{x\left(3x+5\right)}{1+3x}\cdot\dfrac{1-3x}{2x\left(3x+5\right)}\)

\(=\dfrac{2\left(1-3x\right)}{3x+1}\)

c) Ta có: \(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)

\(=\left(\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right)\)

\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3x\left(x+3\right)}{3x-9-x^2}\)

\(=\dfrac{x^2-3x+9}{x-3}\cdot\dfrac{3}{-\left(x^2-3x+9\right)}\)

\(=\dfrac{-3}{x-3}\)