cho tam giác ABC trên tia đối của tia ab lấy điểm M sao cho AM = AB, AN =AC
a, chứng minh tam giác ABC=tam giác AMN
b, chứng minh MN=BC và MN//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC và ΔAMN có
AB=AM
\(\widehat{BAC}=\widehat{MAN}\)(hai góc đối đỉnh)
AC=AN
Do đó: ΔABC=ΔAMN
=>\(\widehat{ABC}=\widehat{AMN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BC//MN
Ap dụng định lý Pytago vào tam giác vuông \(ABC\)ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
a: Sửa đề: Trên tia đối của tia AC lấy N sao cho AN=AC
Xét ΔABC và ΔAMN có
AB=AM
\(\widehat{BAC}=\widehat{MAN}\)(hai góc đối đỉnh)
AC=AN
Do đó: ΔABC=ΔAMN
b; Ta có: ΔABC=ΔAMN
=>BC=MN
Ta có: ΔABC=ΔAMN
=>\(\widehat{ABC}=\widehat{AMN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BC//MN