K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dễ thôi :)))

\(\Leftrightarrow x+y+2\sqrt{xy}=1980\)

vì x;y là các số nguyên dương nên x+y là số nguyên dương

\(\Rightarrow2\sqrt{xy}\in Z^+\Rightarrow\orbr{\begin{cases}x=0;y=1980\\x=1980;y=0\end{cases}}\)

3 tháng 6 2021

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Bạn sai rồi nhé. Xem lại chỗ bình phương.

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

7 tháng 4 2017

\(\sqrt{50}=5\sqrt{2}\) \(\Leftrightarrow\sqrt{x}+\sqrt{y}=5\sqrt{2}\left(x,y\in Z^+\right)\)

Ta có: \(5\sqrt{2}=\sqrt{0}+5\sqrt{2}=\sqrt{2}+4\sqrt{2}=2\sqrt{2}+3\sqrt{2}\)

                         \(=5\sqrt{2}+\sqrt{0}=4\sqrt{2}+\sqrt{2}=3\sqrt{2}+2\sqrt{2}\)              

  • \(\sqrt{x}+\sqrt{y}=\sqrt{0}+5\sqrt{2}=\sqrt{0}+\sqrt{50}\Rightarrow x=0;y=50\left(KTMDK\right)\)   
  • \(\sqrt{x}+\sqrt{y}=\sqrt{2}+4\sqrt{2}=\sqrt{2}+\sqrt{32}\Rightarrow x=2;y=32\left(TMDK\right)\)
  •  \(\sqrt{x}+\sqrt{y}=2\sqrt{2}+3\sqrt{2}=\sqrt{8}+\sqrt{18}\Rightarrow x=8;y=18\left(TMDK\right)\)  
  • \(\sqrt{x}+\sqrt{y}=5\sqrt{2}+\sqrt{0}=\sqrt{50}+\sqrt{0}\Rightarrow x=50;y=0\left(KTMDK\right)\)     
  • \(\sqrt{x}+\sqrt{y}=4\sqrt{2}+\sqrt{2}=\sqrt{32}+\sqrt{2}\Rightarrow x=32;y=2\left(TMDK\right)\)
  • \(\sqrt{x}+\sqrt{y}=3\sqrt{2}+2\sqrt{2}=\sqrt{18}+\sqrt{8}\Rightarrow x=18;y=8\left(TMDK\right)\)

Vậy nghiệm của phương trình (x;y) = (2;32), (8;18), (32;2), (18;8)

4 tháng 12 2016

\(\sqrt{x}+\sqrt{y}=6\sqrt{55}.\)
Đặt \(\sqrt{x}=a\sqrt{55},\sqrt{y}=b\sqrt{55}\Rightarrow a+b=6\)
Do x, y nguyên dương và x<y \(\Rightarrow\left(a,b\right)\in\left\{\left(5,1\right);\left(4,2\right)\right\}\)
Thay vào tính => đáp án ..
 

4 tháng 12 2016

Bạn ơi cho hỏi sao chỉ có 2 cặp vậy

19 tháng 6 2020

và \(\sqrt{x}=\sqrt{2012}=2\sqrt{503}-\sqrt{y}\)

=> \(x=2012-4\sqrt{503y}+y\) là số nguyên dương 

=> \(\sqrt{503y}\) là số nguyên dương 

mà 503 là số nguyên tố và 0 < y < 2012

=> y = 503 

=> x = 503

Kết luận:...

Bài đc đăng vào ngày 14/8/2019 mà đến 19/6/2020 mới đc giải?