K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Biểu thức không có giá trị nhỏ nhất nhé. Bạn xem lại đã viết biểu thức đúng chưa nhỉ?

31 tháng 10 2021

đặt biểu thức là A. Ta có:

A=x2 - 4xy + 5y2 - 2y + 28

  = (x2-4xy+4y2) + (y2-2y +1)+27

  =(x-2y)2 + (y-1)2 + 27

vì (x-2y)≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27

\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\)           ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)

Vậy, Min A=27 khi x=2; y=1

18 tháng 7 2018

\(A=\left(x^2+4xy+4y^2\right)+2\left(x+2y\right)+y^2-4y+12\)

\(=\left(x+2y\right)^2+2\left(x+2y\right)+1+y^2-4y+4+7\)

\(=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5;y=2\)

18 tháng 7 2018

\(A=x^2+5y^2+4xy+2x+12\)

\(\Rightarrow A=x^2+4xy+2x+4y+4y^2+1+y^2-4y+4+7\)

\(\Rightarrow A=\left(x+2y+1\right)^2+\left(y-2\right)^2+7\ge7\)

Vậy giá trị nhỏ nhất  của biểu thức A =7 

\(\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

8 tháng 8 2017

\(M=x^2+5y^2-4xy+2x-8y+2021\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-4y+4\right)+2016\)

\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+2016\ge2016\)

Vậy GTNN của M là 2016 đạt đươc tại \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

28 tháng 12 2016

C = ( x2 - 4xy + 4y2 ) + 10.(x -2y) + ( y2 -2y + 1) + 27

   = ( x-2y)2 + 2.5.(x-2y) + 25 + (y-1)2 + 2

   = ( x-2y + 5 )2 + (y-1)2 + 2 \(\ge2\)vì \(\left(x-2y+5\right)^2\ge0\forall x,y\) và \(\left(y-1\right)^2\ge0\forall y\)

Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy Min C = 2 \(\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

1 tháng 2 2018

a) Ta có \(Q=\frac{x-9}{\sqrt{x}+3}+\frac{25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)

Áp dụng BĐT cô-si, ta có \(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge10\Rightarrow Q\ge10-6=4\)

Dấu = xảy ra <=> x=4

b)Tá có \(M=x^2+4y^2+1+4xy+2x+2y+y^2-2y+1+10\)

=\(\left(x+2y+1\right)^2+\left(y-1\right)^2+10\ge10\)

dấu = xảy ra <=> y=1 và x=-3

^_^

1 tháng 2 2018

giúp mình với mọi người ơi mình đang cần bài này gấp lắm