Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho rằng 2/(x-2) - 2/(x+2)=2,tìm(x2 +1)2
mk cần gấp
Có: \(\dfrac{2}{x-2}-\dfrac{2}{x+2}=2\left(dkxd:x\ne\pm2\right)\)
\(\Rightarrow2\cdot\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)=2\)
\(\Rightarrow\dfrac{1}{x-2}-\dfrac{1}{x+2}=1\)
\(\Rightarrow\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=1\)
\(\Rightarrow\dfrac{x+2-x+2}{x^2-4}=1\)
\(\Rightarrow\dfrac{4}{x^2-4}=1\)
\(\Rightarrow x^2-4=4\)
\(\Rightarrow x^2=8\)
Thay \(x^2=8\) vào \(\left(x^2+1\right)^2\), ta được:
\(\left(8+1\right)^2=9^2=81\)
\(\dfrac{2}{x-2}\) - \(\dfrac{2}{x+2}\) - 2 = 0
2.(\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1) = 0
\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1 = 0
\(\dfrac{x+2-\left(x-2\right)-\left(x-2\right).\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\) = 0
\(x\) + 2 - \(x\) + 2 - (\(x^2\) + 2\(x\) - 2\(x\) - 4) = 0
4 - \(x^2\) + 4 = 0
8 - \(x^2\) = 0
\(x^2\) = 8
Thay \(x^2\) = 8 vào ( \(x^2\) + 1)2 ta có: (\(x^2\) + 1) = (8 + 1)2 = 92 = 81
Có: \(\dfrac{2}{x-2}-\dfrac{2}{x+2}=2\left(dkxd:x\ne\pm2\right)\)
\(\Rightarrow2\cdot\left(\dfrac{1}{x-2}-\dfrac{1}{x+2}\right)=2\)
\(\Rightarrow\dfrac{1}{x-2}-\dfrac{1}{x+2}=1\)
\(\Rightarrow\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=1\)
\(\Rightarrow\dfrac{x+2-x+2}{x^2-4}=1\)
\(\Rightarrow\dfrac{4}{x^2-4}=1\)
\(\Rightarrow x^2-4=4\)
\(\Rightarrow x^2=8\)
Thay \(x^2=8\) vào \(\left(x^2+1\right)^2\), ta được:
\(\left(8+1\right)^2=9^2=81\)
\(\dfrac{2}{x-2}\) - \(\dfrac{2}{x+2}\) - 2 = 0
2.(\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1) = 0
\(\dfrac{1}{x-2}\) - \(\dfrac{1}{x+2}\) - 1 = 0
\(\dfrac{x+2-\left(x-2\right)-\left(x-2\right).\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\) = 0
\(x\) + 2 - \(x\) + 2 - (\(x^2\) + 2\(x\) - 2\(x\) - 4) = 0
4 - \(x^2\) + 4 = 0
8 - \(x^2\) = 0
\(x^2\) = 8
Thay \(x^2\) = 8 vào ( \(x^2\) + 1)2 ta có: (\(x^2\) + 1) = (8 + 1)2 = 92 = 81