Cho (O) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm). Vẽ OA cắt BC tại D.
a) Cm OA là trung trực của BC.
b) Cm OD × DA = BD².
c) Vẽ đường kính BE, AE cắt (O) tại F. Gọi G là trung điểm EF, đường thẳng OG cắt đường thẳng BC tại H. Cm OD × DA = OG × OH.
d) Cm EH là tiếp tuyến (O).
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
b: OA là đường trung trực của BC
=>OA\(\perp\)BC tại D và D là trung điểm của BC
Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot DA=BD^2\)
c: Sửa đề: \(OD\cdot OA=OG\cdot OH\)
Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF tại G
Xét ΔOGA vuông tại G và ΔODH vuông tại D có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔODH
=>\(\dfrac{OG}{OD}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OD\)
d: Xét ΔBOA vuông tại B có BD là đường cao
nên \(OD\cdot OA=OB^2=OE^2\)
=>\(OG\cdot OH=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}=90^0\)
=>EH là tiếp tuyến của (O)