K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

\(\dfrac{16}{2^x}=2\)\(\Rightarrow16:2=2^x\Rightarrow8=2^x\Rightarrow2^3=2^x\Rightarrow x=3\)

19 tháng 2 2018

sorry

NV
18 tháng 11 2018

\(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

\(\Leftrightarrow\dfrac{\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)

\(\Leftrightarrow\dfrac{16-2x+x^2-9+2x-x^2}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\)

\(\Leftrightarrow\dfrac{7}{\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}}=1\Leftrightarrow\dfrac{7}{A}=1\Rightarrow A=7\)

ta có:

\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

17 tháng 7 2018

Ta có:

\(\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)=7\)

\(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\left(16-2x+x^2-9+2x-x^2\right)=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow7=7\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\)

\(\Leftrightarrow\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

Ủng hộ nha

2 tháng 1 2019

Có: \(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}=1\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2+15}-\sqrt{\left(x-1\right)^2+8}=1\)

\(\Leftrightarrow2\left(x-1\right)^2+23-2\sqrt{\left(x-1\right)^4+23\left(x-1\right)^2+120}=1\)

Đặt \(t=\left(x-1\right)^2\left(t\ge0\right)\)

\(\Rightarrow2t+23-2\sqrt{t^2+23t+120}=1\)

\(\Leftrightarrow t+11=\sqrt{t^2+23t+120}\)

\(\Leftrightarrow t^2+22t+121=t^2+23t+120\)

\(\Leftrightarrow t=1\left(TM\right)\)

\(\Rightarrow x\in\left\{0;2\right\}\)

Thay x=0 vào A, ta có:

\(A=\sqrt{16-2.0+0^2}+\sqrt{9-2.0+0^2}=7\)

Thay x=2 vào A, ta có:

\(A=\sqrt{16-2.1+1^2}+\sqrt{9-2.1+1^2}=\sqrt{15}+2\sqrt{2}\)

2 tháng 1 2019

Ta có \(\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=16-2x+x^2-\left(9-2x+x^2\right)=16-2x+x^2-9+2x-x=7\Leftrightarrow\left(\sqrt{16-2x+x^2}-\sqrt{9-2x+x^2}\right)\left(\sqrt{16-2x+x^2}+\sqrt{9-2x+x^2}\right)=7\Leftrightarrow1.A=7\Leftrightarrow A=7\)

14 tháng 4 2023

đặt A=2^x +2^x+1 +.....+2^x+2021=2^x+2026-16

đặt 2A = 2^x+1 +2^x+2 +......+2^x+2022=2^x+2027-32

lấy 2A-A =2^x+2022-2^x=2^2026-16

vậy,ta suy ra x=4

=>\(2^x\left(1+2+2^2+...+2^{2021}\right)=2^4\left(2^{2022}-1\right)\)

=>2^x=2^4

=>x=4

30 tháng 8 2023

Đặt \(A=2^x+2^{x+1}+...+2^{x+2021}=2^{x+2026-16}\)

Đặt \(2A=2^{x+1}+2^{x+2}+...+2^{x+2022}=2^{x+2027+32}\)

Ta lấy \(2A-A=2^{x+2022}-2^x=2^{2026-16}\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

30 tháng 8 2023

\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2022}\)

\(VT=2VT-VT=2^{x+2022}-2^x\)

\(\Rightarrow2^{x+2022}-2^x=2^{2026}-16\)

\(\Leftrightarrow2^{2022}.2^x-2^x=2^{2026}-2^4\)

\(\Leftrightarrow2^x\left(2^{2022}-1\right)=2^4\left(2^{2022}-1\right)\)

\(\Leftrightarrow2^x=2^4\Rightarrow x=4\)

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

1.

PT $\Leftrightarrow 2^{x^2-5x+6}+2^{1-x^2}-2^{7-5x}-1=0$

$\Leftrightarrow (2^{x^2-5x+6}-2^{7-5x})-(1-2^{1-x^2})=0$

$\Leftrightarrow 2^{7-5x}(2^{x^2-1}-1)-(2^{x^2-1}-1)2^{1-x^2}=0$

$\Leftrightarrow (2^{x^2-1}-1)(2^{7-5x}-2^{1-x^2})=0$

$\Rightarrow 2^{x^2-1}-1=0$ hoặc $2^{7-5x}-2^{1-x^2}=0$

Nếu $2^{x^2-1}=1\Leftrightarrow x^2-1=0$

$\Leftrightarrow x^2=1\Leftrightarrow x=\pm 1$

$2^{7-5x}-2^{1-x^2}=0$

$\Leftrightarrow 7-5x=1-x^2\Leftrightarrow x^2-5x+6=0$

$\Leftrightarrow (x-2)(x-3)=0\Leftrightarrow x=2; x=3$

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

2. Đặt $\sin ^2x=a$ thì $\cos ^2x=1-a$. PT trở thành:

$16^a+16^{1-a}=10$

$\Leftrightarrow 16^a+\frac{16}{16^a}=10$

$\Leftrightarrow (16^a)^2-10.16^a+16=0$

Đặt $16^a=x$ thì:

$x^2-10x+16=0$

$\Leftrightarrow (x-2)(x-8)=0$

$\Leftrightarrow x=2$ hoặc $x=8$

$\Leftrightarrow 16^a=2$ hoặc $16^a=8$

$\Leftrightarrow 2^{4a}=2$ hoặc $2^{4a}=2^3$

$\Leftrightarroww 4a=1$ hoặc $4a=3$

$\Leftrightarrow a=\frac{1}{4}$ hoặc $a=\frac{3}{4}$

Nếu $a=\frac{1}{4}\Leftrightarrow \sin ^2x=\frac{1}{4}$

$\Leftrightarrow \sin x=\pm \frac{1}{2}$

Nếu $a=\sin ^2x=\frac{3}{4}\Rightarrow \sin x=\pm \frac{\sqrt{3}}{2}$

Đến đây thì đơn giản rồi.